184. A Remark on Picard Principle

By Mitsuru Nakai
Mathematical Institute, Faculty of Science, Nagoya University
(Comm. by Kôsaku Yosida, M. J. A., Dec. 12, 1974)

A nonnegative locally Hölder continuous function $P(z)$ on $0<|z| \leq 1$ will be referred to as a density on the punctured unit disk $\Omega: 0<|z|<1$ with a singularity at $z=0$, removable or genuine. The elliptic dimension of a density P on Ω at $z=0, \operatorname{dim} P$ in notation, is the dimension of the half module of nonnegative solutions u of the equation $\Delta u=P u$ on Ω with vanishing boundary values on $|z|=1$. After Bouligand we say that the Picard principle is valid for a density P at $z=0$ if $\operatorname{dim} P$ $=1$. That the Picard principle is valid for the density $P(z) \equiv 0$, i.e. for the harmonic case, is the well known classical result. Less trivial examples are $P(z)=|z|^{-\lambda}(\lambda \in(-\infty, 2])$ (cf. [2]) and densities $P(z)$ with the property

$$
\int_{\Omega-E} P(z) \log \frac{1}{|z|} d x d y<\infty \quad(z=x+i y)
$$

where $E=E_{P}$ is a closed subset of Ω thin at $z=0$ (cf. [3]). These examples suggest that singularities of densities $P(z)$ at $z=0$ for which the Picard principle is valid are 'not so wild'. In view of this one might be tempted to say that if the Picard principle is valid for two densities $P_{j}(j=1,2)$, then it is also valid for the density $P_{1}+P_{2}$. The purpose of this note is to stress the complexity of the Picard principle by showing that the above intuition is wrong. Namely we shall prove the following

Theorem. There exists a pair of densities $P_{j}(j=1,2)$ on Ω such that the Picard principle is valid for $P_{j}(j=1,2)$ at $z=0$ but invalid for the density $P_{1}+P_{2}$ at $z=0$.

Actually densities $P_{j}(j=1,2)$ we are going to construct as stated in the above theorem are rotation free in the sense that $P_{j}(z)=P_{j}(|z|)$ on Ω, and satisfy $\operatorname{dim} P_{j}=1(j=1,2)$ and $\operatorname{dim}\left(P_{1}+P_{2}\right)=c$ (the cardinal number of continuum). This also shows the invalidity of subadditivity of elliptic dimensions, i.e. the following inequality does not hold in general :

$$
\operatorname{dim}\left(P_{1}+P_{2}\right) \leq \operatorname{dim} P_{1}+\operatorname{dim} P_{2} .
$$

1. To construct the required P_{j} we need to consider auxiliary functions $s(t ; \lambda, \mu)$ and $c(t ; \lambda, \mu)$ which are modifications of trigonometric functions. Let $\lambda \in[1,2)$ and $\mu \in \boldsymbol{R}$ (the real number field). Consider mutually disjoint closed intervals

$$
\sigma_{n}(\lambda, \mu)=[(2 n-(\lambda+1) / 2+\mu) \pi,(2 n+(\lambda-1) / 2+\mu) \pi]
$$

for $n \in N$ (the set of integers) and the open set

$$
\tau(\lambda, \mu)=\boldsymbol{R}-\bigcup_{n \in N} \sigma_{n}(\lambda, \mu) .
$$

We define functions $s(t ; \lambda, \mu)$ and $c(t ; \lambda, \mu)$ on \boldsymbol{R} by

$$
s(t ; \lambda, \mu)= \begin{cases}\sin \left(\lambda^{-1}(t-(2 n-(\lambda+1) / 2+\mu) \pi)\right) & \left(t \in \sigma_{n}(\lambda, \mu), n \in N\right) ; \\ 0 & (t \in \tau(\lambda, \mu))\end{cases}
$$

and similarly

$$
c(t ; \lambda, \mu)= \begin{cases}\cos \left(\lambda^{-1}(t-(2 n-(\lambda+1) / 2+\mu) \pi)\right) & \left(t \in \sigma_{n}(\lambda, \mu), n \in N\right) ; \\ 0 & (t \in \tau(\lambda, \mu)) .\end{cases}
$$

The function $s(t ; \lambda, \mu)$ is continuous but $c(t ; \lambda, \mu)$ is not. However $c^{2}(t ; \lambda, \mu)$ is continuous and

$$
s^{2}(t ; \lambda, \mu)+c^{2}(t ; \lambda, \mu)=1
$$

on \boldsymbol{R}. The function $s(t ; \lambda, \mu)$ itself is not of class C^{1} but $s^{2}(t ; \lambda, \mu)$ is, and

$$
\frac{d}{d t} s^{2}(t ; \lambda, \mu)=2 \lambda^{-1} s(t ; \lambda, \mu) c(t ; \lambda, \mu)
$$

on \boldsymbol{R} which is equal to $\lambda^{-1} \sin \left(2 \lambda^{-1}(t-(2 n-(\lambda+1) / 2+\lambda) \mu) \pi\right)$) on $\sigma_{n}(\lambda, \mu)$ ($n \in N$) and 0 on $\tau\left(\lambda, \mu\right.$). Thus $d s^{2}(t ; \lambda, \mu) / d t$ is less than or equal to 1 in the absolute value. We set

$$
s_{1}(t)=s(t ; 1,1), \quad c_{1}(t)=c(t ; 1,1)
$$

and similarly

$$
s_{2}(t)=s(t ; 3 / 2,0), \quad c_{2}(t)=c(t ; 3 / 2,0)
$$

2. With the aid of auxiliary functions s_{j} and c_{j} we define

$$
\begin{aligned}
P_{j}(z)=|z|^{-2}\{ & \left(\log \frac{1}{|z|}\right)^{4} s_{j}^{4}\left(\log \frac{1}{|z|}\right)+2\left(\log \frac{1}{|z|}\right) c_{j}^{2}\left(\log \frac{1}{|z|}\right) \\
& +2\left(1+\log \frac{1}{|z|}\right)\left(\log \frac{1}{|z|}\right)^{2} s_{j}^{2}\left(\log \frac{1}{|z|}\right) \\
& \left.+\left(\log \frac{1}{|z|}\right)^{2}\left(1-3^{-1} s_{j}\left(\log \frac{1}{|z|}\right) c_{j}\left(\log \frac{1}{|z|}\right)\right)\right\}
\end{aligned}
$$

for $j=1,2$. These are certainly rotation free densities on Ω. We shall prove that $\operatorname{dim} P_{j}=1(j=1,2)$ and $\operatorname{dim}\left(P_{1}+P_{2}\right)=c$.
3. Before proceeding to the proof of the assertion in no. 2 we need to make some preparations. Let $P(z)$ be a rotation free density on Ω, i.e. $P(z)=P(|z|)$. Then $\operatorname{dim} P=1$ or c (cf. [2]). The associated function $Q(t)$ to $P(z)$ is the function on $[0, \infty)$ defined by

$$
Q(t)=e^{-2 t} P\left(e^{-t}\right)
$$

The Riccati component a_{Q} of Q is the unique nonnegative solution of the equation

$$
-\frac{d}{d t} a(t)+a^{2}(t)=Q(t)
$$

on $[0, \infty)$ (cf. [4]). It is known (cf. [1]) that $\operatorname{dim} P=1$ (c, resp.) is characterized in terms of a_{Q} by

$$
\int_{0}^{\infty}\left(a_{Q}(t)+1\right)^{-1} d t=\infty \quad(<\infty, \text { resp. })
$$

4. We are ready to prove the assertion in no. 2. Let Q_{j} be the associated function to $P_{j}(j=1,2)$. Then $Q_{1}+Q_{2}$ is the associated function to $P_{1}+P_{2}$. In view of no. 3 all we have to show is that

$$
\begin{equation*}
\int_{0}^{\infty}\left(a_{Q_{j}}(t)+1\right)^{-1} d t=\infty \quad(j=1,2), \tag{1}
\end{equation*}
$$

which is equivalent to $\operatorname{dim} P_{j}=1(j=1,2)$, and

$$
\begin{equation*}
\int_{0}^{\infty}\left(a_{Q_{1}+Q_{2}}(t)+1\right)^{-1} d t<\infty \tag{2}
\end{equation*}
$$

which is equivalent to $\operatorname{dim}\left(P_{1}+P_{2}\right)=c$. On using relations in no. 1 concerning s_{j} and c_{j} it is easily checked that

$$
a_{Q_{j}}(t)=t^{2} s_{j}^{2}(t)+t+1 \quad(j=1,2)
$$

Therefore the integrand in (1) is $t+1$ on the disjoint countable union of open intervals with the constant positive length and we conclude that (1) is true.

We recall that $Q \rightarrow a_{Q}$ is an order preserving operator (cf. [4]). Set $Q \equiv Q_{1}+Q_{2}+2 \alpha_{Q_{1}} \cdot a_{Q_{2}}$ which is the associated function to a rotation free density $P(z) \equiv|z|^{-2} Q(-\log |z|)$ on Ω. It is easily seen that $a_{Q_{1}}+a_{Q_{2}}=a_{Q}$ and hence $Q \geq Q_{1}+Q_{2}$ implies $a_{Q_{1}}+a_{Q_{2}}=a_{Q} \geq a_{Q_{1}+Q_{2}}$. Similarly $Q_{1}+Q_{2}$ $\geq Q_{j}(j=1,2)$ implies that $a_{Q_{1}+Q_{2}} \geq a_{Q_{j}}(j=1,2)$. Therefore

$$
2 a_{Q_{1}+Q_{2}} \geq a_{Q_{1}}+a_{Q_{2}} \geq a_{Q_{1}+Q_{2}}
$$

and a fortiori (2) is equivalent to

$$
\begin{equation*}
\int_{0}^{\infty}\left(a_{Q_{1}}(t)+a_{Q_{2}}(t)+1\right)^{-1} d t<\infty . \tag{3}
\end{equation*}
$$

Here $\alpha_{Q_{1}}(t)+a_{Q_{2}}(t)=t^{2}\left(s_{1}^{2}(t)+s_{2}^{2}(t)\right)+2 t+2$. Observe that $s_{1}^{2}+s_{2}^{2}$ has a positive infimum on R and hence on $[0, \infty)$. Therefore the integrand in (3) is dominated by a positive constant multiple of $(t+1)^{-2}$ and we conclude that (3) is valid.

References

[1] M. Kawamura and M. Nakai: A test of Picard principle for rotation free densities. II (to appear).
[2] M. Nakai: Martin boundary over an isolated singularities of rotation free densities. J. Math. Soc. Japan, 26, 483-507 (1974).
[3] --: A test for Picard principle (to appear in Nagoya Math. J., 56).
[4] -: A test of Picard principle for rotation free densities (to appear).

