178. Lipschitz Functions and Convolution

By Yoshikazu Uno
Kanazawa University
(Comm. by Kinjirô Kunugi, m. J. A., Dec. 12, 1974)

1. Introduction. In this paper we shall consider functions defined on the torus. S. Bernstein's theorem [7; vol. 1, p. 240] says that the set $\operatorname{Lip} \alpha$ is contained in the space A of functions with an absolutely convergent Fourier series when $\alpha>1 / 2$. As is well known, the space A coincides with the space $L^{2} * L^{2}$ [7; vol. 1, p. 251]. These assert that $\operatorname{Lip} \alpha$ is contained in $L^{2} * L^{2}$ if $\alpha>1 / 2$. On the other hand, R. Salem's result [6] implies that the space $L^{1} * L^{\infty}$ is equal to the space C of all continuous functions (see also [2]). Therefore it is trivial that $\operatorname{Lip} \alpha$ is contained in $L^{1} * L^{\infty}$ for $\alpha>0$. Then it is expected that Lip α is contained in $L^{p} * L^{q}$ if $\alpha>1 / q$ where $1<p<2$ and $1 / p+1 / q=1$. This fact is proved by using results of N. Aronszajn-K. T. Smith and A. P. Calderon (see [3]). We shall give an elementary proof.

Theorem 1. Let $1 \leqq p<\infty, 1 / p+1 / q=1$ and $1 \leqq r \leqq \infty$. If $f \in L^{r}$ and $\left\|\sigma_{n}-f\right\|_{r}=O\left(n^{-\alpha}\right)$ for some $\alpha>1 / q$, then $f \in L^{p} * L^{r}$ where σ_{n} is the n-th $(C, 1)$ mean of Fourier series of f.

Corollary 1. Let $1 \leqq p \leqq 2$ and $1 / p+1 / q=1$. If $\alpha>1 / q$, then $\operatorname{Lip} \alpha$ is contained in $L^{p} * L^{q}$. There exists however a function which belongs to Lip $1 / q$ but not to $L^{p} * L^{q}$ if $p \neq 1$.

Now we denote by $B V_{p}$ the space of functions of p-bounded variation for $1 \leqq p \leqq \infty$ (see [3] or [5] for definition). It is obvious that $B V_{1}$ is the set of functions of ordinary bounded variation and $B V_{\infty}$ is of bounded functions.

Corollary 2. If $1 \leqq p \leqq 2$ and $1 / p+1 / q=1$, then the intersection of $\operatorname{Lip} \alpha$ and $B V_{q-\varepsilon}$ is contained in $L^{p} * L^{q}$ for $\alpha>0$ and $\varepsilon>0$.

The case $p=2$ and $\varepsilon=1$ is A. Zygmund's theorem [7; vol. 1, p. 241] by $A=L^{2} * L^{2}$ and the case $p=1$, as previously stated, is trivial from R . Salem's result.

In the proof of Theorem 1, we use a method of R. Salem [6].
2. Lemmas. We shall here state some lemmas.

Lemma 1. Let $1 \leqq p \leqq \infty$ and $1 / p+1 / q=1$. If a positive and convex sequence $\left\{\lambda_{n}\right\}$ tending to zero satisfies the condition

$$
\sum_{n=1}^{\infty} n^{1+1 / q}\left(\lambda_{n-1}+\lambda_{n+1}-2 \lambda_{n}\right)<\infty
$$

then there is a function g in L^{p} such that $\hat{g}(n)=\lambda_{|n|}$ for every integer n.
Proof. Denoting the Fejér kernel by K_{n}, the series

$$
\sum_{n=1}^{\infty} n\left(\lambda_{n-1}+\lambda_{n+1}-2 \lambda_{n}\right) K_{n}
$$

converges in L^{p} by hypotheses since $\left\|K_{n}\right\|_{p}=O\left(n^{1 / q}\right)$. Then its sum g is a required function.

Lemma 2. Let $1 \leqq p \leqq \infty$ and $1 / p+1 / q=1$. If $\beta>1 / q$, then there exists a function g in L^{p} such that $\hat{g}(n)=(|n|+1)^{-\beta}$ for every n.

Proof. It is a trivial result of Lemma 1.
Lemma 3. Let $1<p \leqq 2$ and $1 / p+1 / q=1$. If $f \in L^{p} * L^{2}$, then

$$
\sum_{n=-\infty}^{\infty}|\hat{f}(n)||n|^{1 / q-1 / 2}<\infty
$$

Proof. Let $f=g * h$ for some g in L^{p} and h in L^{2}. Then, by Hölder's inequality, we have

$$
\begin{aligned}
& \sum_{n=-\infty}^{\infty}|\hat{f}(n)||n|^{1 / q-1 / 2} \\
& \quad \leqq\left\{\sum_{n=-\infty}^{\infty}|\hat{g}(n)|^{p}|n|^{p-2}\right\}^{1 / 2 p}\left\{\sum_{n=-\infty}^{\infty}|\hat{g}(n)|^{q}\right\}^{1 / 2 q}\left\{\sum_{n=-\infty}^{\infty}|\hat{h}(n)|^{2}\right\}^{1 / 2}
\end{aligned}
$$

The three series converge in virtue of theorems of Hardy-Littlewood [7; vol. 2, p. 109], Hausdorff-Young [7; vol. 2, p. 101] and Parseval, respectively.
3. Proof of Theorem 1. We take β such that $1 / q<\beta<\alpha$ and a function g as in Lemma 2 for this β. Then $g \in L^{p}$. Let $\mu_{n}=1 / \hat{g}(n)$ and $\tau_{n}(x)$ be the n-th $(C, 1)$ mean of the series

$$
\sum_{n=-\infty}^{\infty} \mu_{n} \hat{f}(n) e^{i n x}
$$

Then, summing by parts twice, we have

$$
\begin{aligned}
\tau_{n}= & \sum_{k=0}^{n-1} \Delta^{2} \mu_{k}(k+1) \sigma_{k}-(n+1)^{-1} \sum_{k=0}^{n-1} \Delta^{2} \mu_{k}(k+1) k \sigma_{k} \\
& +2(n+1)^{-1} \sum_{k=0}^{n-1} \Delta \mu_{k+1}(k+1) \sigma_{k}+\mu_{n} \sigma_{n}
\end{aligned}
$$

where $\Delta \mu_{k}=\mu_{k}-\mu_{k+1}$ and $\Delta^{2} \mu_{k}=\Delta \mu_{k}-\Delta \mu_{k+1}$. Substituting $\sigma_{k}-f$ for σ_{k} in the above equality, we obtain

$$
\begin{aligned}
\tau_{n}= & \sum_{k=0}^{n-1} \Delta^{2} \mu_{k}(k+1)\left(\sigma_{k}-f\right)-(n+1)^{-1} \sum_{k=0}^{n-1} \Delta^{2} \mu_{k}(k+1) k\left(\sigma_{k}-f\right) \\
& +2(n+1)^{-1} \sum_{k=0}^{n-1} \Delta \mu_{k+1}(k+1)\left(\sigma_{k}-f\right)+\mu_{n}\left(\sigma_{n}-f\right)+\mu_{0} f \\
= & \sum_{1}(n)-\sum_{2}(n)+2 \sum_{3}(n)+\mu_{n}\left(\sigma_{n}-f\right)+\mu_{0} f \quad \text { say. }
\end{aligned}
$$

By hyposeses, $\Delta \mu_{k}=O\left(k^{\beta-1}\right)$ and $\Delta^{2} \mu_{k}=O\left(k^{\beta-2}\right)$, we have
$\Delta^{2} \mu_{k}(k+1) k\left\|\sigma_{k}-f\right\|_{r}=O\left(k^{\beta-\alpha}\right), \quad \Delta \mu_{k+1}(k+1)\left\|\sigma_{k}-f\right\|_{r}=O\left(k^{\beta-\alpha}\right)$
and $\mu_{n}\left\|\sigma_{n}-f\right\|_{r}=O\left(n^{\beta-\alpha}\right)$. Hence $\sum_{2}(n)$ and $\sum_{3}(n)$ tend to zero in L^{r} since they are n-th ($C, 1$) means of $\Delta^{2} \mu_{k}(k+1) k\left(\sigma_{k}-f\right)$ and $\Delta \mu_{k+1}(k+1)$ ($\sigma_{k}-f$), respectively. Moreover we have

$$
\sum_{k=0}^{n-1} \Delta^{2} \mu_{k}(k+1)\left\|\sigma_{k}-f\right\|_{r}=O\left(\sum_{k=1}^{n} k^{-1-\alpha+\beta}\right)=O(1)
$$

and then $\sum_{1}(n)$ converges in L^{r}. Thus τ_{n} converges in L^{r} to a function
h. It is easy to see that $\hat{h}(n)=\mu_{n} \hat{f}(n)$. Therefore $\hat{f}(n)=\hat{g}(n) \hat{h}(n)$, that is, $f=g * h$. Consequently $f \in L^{p} * L^{r}$.
4. Proof of Corollary 1. We shall prove the first part. Let $1>\alpha>1 / q$ and $f \in \operatorname{Lip} \alpha$. It is well known that $\left\|\sigma_{n}-f\right\|_{\infty}=O\left(n^{-\alpha}\right)$ [7; vol. 1, p. 91]. Therefore $f \in L^{p} * L^{\infty}$ by Theorem 1 and so $f \in L^{p} * L^{q}$.

Next we shall show the second part. It is enough to show that there exists a function in $\operatorname{Lip} 1 / q$ but not in $L^{p} * L^{2}$ when $p \neq 1$. We consider the function

$$
f(x)=\sum_{n=1}^{\infty} \frac{e^{i n \log n}}{n^{1 / 2+1 / q}} e^{i n x}
$$

Then $f \in \operatorname{Lip} 1 / q$ and $|\hat{f}(n)|=n^{-1 / 2-1 / q}$ for $n \geqq 1[7 ;$ vol. 1, p. 197] and so

$$
\sum_{n=1}^{\infty}|\hat{f}(n)| n^{1 / q-1 / 2}=\infty
$$

Consequently $f \in L^{p} * L^{2}$ by Lemma 3 .
Remark. Let $1 \leqq p, r \leqq 2$. Hölder's and Hausdorff-Young inequalities imply that if $f \in L^{p} * L^{r}$, then $\hat{f} \in l^{s}$ where $1 / s=2-1 / p-1 / r$. Therefore the case $r=2$ is the fact that $\hat{f} \in l^{2 p /(3 p-2)}$ for every $f \in L^{p} * L^{2}$. If f is the function in the proof of the second part of Corollary 1, then $\hat{f} \notin l^{2 p /(3 p-2)}$ and so this together with the above fact proves the second part of Corollary 1, too. Moreover the part is also proved by using the Rudin-Shapiro polynomials.
5. Proof of Corollary 2. It is trivial when $p=1$ by Corollary 1. Let $1<p \leqq 2$ and $f \in \operatorname{Lip} \alpha \cap B V_{q-\varepsilon}$ for some $\alpha, \varepsilon>0$. Then we obtain (see [3] or [5])

$$
\int_{0}^{2 \pi}|f(x+y)-f(x)|^{q-s} d x=O(|y|)
$$

Now, by $f \in \operatorname{Lip} \alpha$, we have

$$
\left\|f_{y}-f\right\|_{q}=O\left(|y|^{\left(1+\alpha_{c}\right) / q}\right) .
$$

Therefore $f \in L^{p} * L^{q}$ by Theorem 1 .
Remark. It is easy to see that $B V_{q}$ contains Lip $1 / q$. Therefore Corollary 2 does not hold when $\alpha=1 / q$ and $\varepsilon=0$.
6. Application. The space of all multiplies of type (r, s) will be denoted by M_{r}^{s}. L.-S. Hahn [4] showed that if $1 \leqq p \leqq q \leqq \infty$ and $1 / p$ $+1 / q \geqq 1$, then $L^{p} * L^{q}$ is contained in M_{r}^{s} where

$$
\begin{aligned}
& 1 / r=(1-2 \theta)+(4 \theta-1) / 2 p+1 / 2 q, \\
& 1 / s=2(1-\theta)+(4 \theta-3) / 2 p-1 / 2 q,
\end{aligned}
$$

for all $\theta, 0 \leqq \theta \leqq 1$. He asked, then, whether bounds of θ are improved. If we put $p_{2}=r_{2}=1$ and $q_{2}=s_{2}=2$ in Hahn's proof of the above result, we can show the following.

Theorem 2. If $1 \leqq p \leqq 2 \leqq q \leqq \infty$ and $1 / p+1 / q \geqq 1$, then $L^{p} * L^{q}$ is contained in M_{r}^{s} where

$$
\begin{aligned}
& 1 / r=(1 / 2-\theta)+\theta / p+(1-\theta) / q, \\
& 1 / s=(3 / 2-\theta)-(1-\theta) / p-\theta / q,
\end{aligned}
$$

for all $\theta, 0 \leqq \theta \leqq 1$.
This Theorem 2 contains the Hahn's result if $q \geqq 2$. Bounds of θ in Theorem 2 cannot be improved. For let σ be s corresponding to $\theta<0$ in the equality of Theorem 2 and then $3 / 2-1 / p<1 / \sigma \leqq 1$. If we take ρ such that $1 / \sigma=3 / 2-1 / \rho$, then $p<\rho \leqq 2$. By Remark in $\S 4$, there is a function f in Lip $1 / \rho^{\prime}$ with $\hat{f} \in l^{\sigma}\left(1 / \rho+1 / \rho^{\prime}=1\right)$. Then $f \in L^{p} * L^{\infty}$ by Theorem 1 since $1 / \rho^{\prime}>1 / p^{\prime}\left(1 / p+1 / p^{\prime}=1\right)$. But $f \& M_{r}^{o}$ for all $r \geqq 1$ because $\hat{f} \notin l^{o}$. Thus this fact together with the usual duality argument shows that bounds of θ cannot be improved.

References

[1] J. Bryant: On convolution and Fourier series. Duke Math. Journ., 34, 117-122 (1967).
[2] P. J. Cohen: Factorization in group algebras. Duke Math. Journ., 26, 199-205 (1959).
[3] L.-S. Hahn: On multipliers of p-integrable functions. Trans. Amer. Math. Soc., 128, 321-335 (1967).
[4] -: A theorem on multipliers of type (p, q). Proc. Amer. Math. Soc., 21, 493-495 (1969).
[5] I. I. Hirschman, Jr.: On multiplier transformations. Duke Math. Journ., 26, 221-242 (1959).
[6] R. Salem: Sur les transformations des series de Fourier. Fund. Math., 33, 108-114 (1939).
[7] A. Zygmund: Trigonometric Series (2nd edition), 2 vol's. Cambridge Univ. Press (1959).

