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1. Introduction. In this paper we shall consider unctions defined
on the torus. S. Bernstein’s theorem [7; vol. 1, p. 240] says that the
set Lip a is contained in the space A of unctions with an absolutely
convergent Fourier series when a1/2. As is well known, the space
A coincides with the space L2.L [7; vol. 1, p. 251]. These assert that
Lipa is contained in L.L i al/2. On the other hand, R. Salem’s
result [6] implies that the space L.L is equal to the space C of all con-
tinuous functions (see also [2]). Therefore it is trivial that Lip a is con-
tained in LX.L or a0. Then it is expected that Lip a is contained
in Lp.Lq i a 1 / q where 1 p 2 and 1 / 1o + 1 q- 1. This act is proved
by using results o N. Aronszajn-K. T. Smith and A. P. Calderon (see
[3]). We shall give an elementary proo.

Theorem 1. Let l<=pc, 1/p+l/q-l and l<=r=c. If f eL
and lan-- fl r--O(n-) for some 1/q, then f e Lp.L where an is the
n-th (C, 1) mean of Fourier series of f

Corollary 1. Let l=<p__<2 and 1/p+l/q--1. If crl/q, then
Lip c is contained in L.Lq. There exists however a function which
belongs to Lip 1/q but not to L.L if p=/=l.

Now we denote by BV the space of unctions o p-bounded vari-
ation for l__<p<__ c (see [3] or [5] for definition). It is obvious that BV
is the set of unctions o ordinary bounded variation and BV is of
bounded functions.

Corollary 2. If lp2 and lip+l/q-I, then the intersection

of Lipa and BVq_ is contained in L’.L for0 and 0.
The case p--2 and e--1 is A. Zygmund’s theorem [7; vol. 1, p. 241]

by A--L.L and the case p-1, as previously stated, is trivial from R.
Salem’s result.

In the proof o Theorem 1, we use a method of R. Salem [6].
2. Lemmas. We shall here state some lemmas.
Lemma 1. Let l<=p<=c and 1/p+l/q-1. If a positive and

convex sequence {2n} tending to zero satisfies the condition

nl+l/q(n_l + n+l--2n) (:,

then there is a function g in L such that (n)-2n for every integer n.
Proof. Denoting the Fejr kernel by Kn, the series
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, n(2_ + 2n+--22)K
converges in L by hypotheses since K IIp--O(nl/q). Then its sum g is
a required 2unction.

Lemma 2. Let 1<= p <= oo and 1/p+ 1/q 1. If 1/q, then there
exists a function g in L such that (n)=(n[+ 1)- for every n.

Proof. It is a trivial result of Lemma 1.
Lemma . Let 1p 2 and lip + 1/q 1. If f e L.L, then

E ](n)I n ’/-’=<.
Proof. Let f-g.h or some g in L and h in L. Then, by

HSlder’s inequality, we have

The three series converge in virtue of theorems of Hardy-Littlewood
[7; vol. 2, p. 109], Hausdorff-Young [7; vol. 2, p. 101] and Parseval,
respectively.. Proof of Theorem 1. We take fl such that 1/qfla and a
function g as in Lemma 2 or this ft. Then g e L. Let z=l/(n)
and r,(x) be the n-th (C, 1) mean of the series

Zn?()’.
Then, summing by parts twice, we have

n-1 n-1

k=O k=O

+2(n+ 1)- Z+(k+
k=O

where Z--Z--Z+ and --Z--Z+. Substituting z-f or a
in the above equality, we obtain

n-1 n-1

r- E z(k+ 1)(z-f)-(n+ 1)-’ E XZ(k+ 1)k(z-f)
k=O k=O

+2(n+ 1)- E Z+(k+ 1)(z--f)+p(a--f)+Zof

E1 (n) E2 (n) + 2 E3 (n) + n(ffn f) + of say.
By hyposeses, z-O(k-) and =O(k-), we have
z(k+ 1)k ]la--f --O(k-=), Z+,(k+ 1)]]z-f] -O(k-=)

and Z a-f ,-O(n-=). Hence (n) and (n) tend to zero in L"
since they are n-th (C, 1) means of Z(k+ 1)k(a-f) and +(k+ 1)
(a- f), respectively. Moreover we have

E Xz(k+ ) z-y I,-0 k-’-=+ -0(1)
k=0

and then , (n) converges in L". Thus r converges in L" to a unction
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h. It is easy to see that/(n) =pf(n). Therefore f(n)= (n)f(n), that
is, f g,h. Consequently f e Lv,Lr.

4. Proof of Corollary 1. We shall prove the first part. Let
1 >a> 1 / q and f e Lip a. It is well known that an-f I1 O(n-") [7
vol. 1, p. 91]. Therefore f e Lv,L by Theorem 1 and so f e L,Lq.

Next we shall show the second part. It is enoug to show that
there exists a function in Lip 1/q but not in L’,L when pl. We
consider the function

ein log

f(x) etn.
n= ll+Vq

Then f e Lip 1/q and f(n)]=n-/-/q or n1 [7; vol. 1, p. 197] and so

Consequently f L.L by Lemma 3.
Remark. Let lp, r2. HS]de’s and Hausdorff-Young in-

equalities imply that if [ e L,L", then ] e where
Therefore the case r=2 is the act that f e -> or every f e L.L.
If f is the unction in the proo of the second part of Corollary 1, then

f e /-> and so this together with the above fact proves the second
part o Corollary 1, too. Moreover the part is also proved by using
the Rudin-Shapiro polynomials.

5. Proof of CoroIIar . It is trivil hen --I by Corollry I.
Let 1p 2 and f e Lip BV_, or some , e 0. Then we obtain
(see [3] or [5])

Now, by f Lip , we have

Itf-f I- O(lyl<’+::>z)
Therefore f L’.L by Theorem 1.

Remark. It is easy to see that BV contains Lip 1/q. Therefore
Corollary 2 does not hold hen -1/q nd -0.

6. Application. The space of ll ultiplies of type (r, ) ill be
denoted by Mr. L.-S. Hahn [4] showed that i lpq and lip

1 q 1, then L,L is contained in M where
l/r-(1-2o) + (4-)/2+ 1/2,
1 / s 2(1 o) + (40 3) /2 1 / 2q,

for 11 0, 00l. He sked, then, hether bounds of 0 re iTroved.
If we put p=r-I and q-s-2 in Hahn’s proof o the above result,
e cn sho the folloinl.

Theorem 2. If lp2q and 1/p+llql, then Lv,L" is

contained in M where
1/r (1/2--) + 0/p + (1--0)/q,
1/s-(3/2-O)--(1--O)/p-O/.q,
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for all O, 0__<0__<1.
This Theorem 2 contains the Hahn’s result if q_>_2. Bounds of 0

in Theorem 2 cannot be improved. For let a be s corresponding to
O 0 in the equality of Theorem 2 and then 3/2-- 1 / p 1 / a__< 1. If we
take p such that 1 /a-3/2-1/ p, then p p__< 2. By Remark in 4, there
is a unction f, in Lip lip’ with f e (l/p+ 1/p’-l). Then f e L.L
by Theorem I since 1/p’ 1/p’ (1/p + 1/p’-- 1). But f e M or all r >__ 1
because f e . Thus this act together with the usual duality argument
shows that bounds o t cannot be improved.
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