No. 1] Proc. Japan Acad., 51 (1975) 1

1. Finiteness of Objects in Categories

By Tadashi OHKUMA

(Comm. by Kinjird KUNUGI, M. J. A., Jan. 18, 1975)

Introduction. The well-known notion of ultraproducts in model
theory was re-defined in terms of categories in [2], and it was observed
that having an injective diagonal map d: B—B*/D for any set 4 and
its ultrafilter D is essential for the object B to have an algebraic
(finitary) structure. However, there, we dealt with only concrete
categories. When we deal with sets such as objects in concrete cate-
gories, we tacitly assume that the notion of finiteness is well under-
stood, but in order to generalize the theorems into abstract categories,
we need to define the notion of finiteness in terms of categories.

We made some attempt in [3] to describe the finiteness of structure
in objects in terms of categories, and thereby some of theorems in [2]
were generalized. Here, we make another attempt to describe the
finiteness of objects themselves, and the theorems in [2] which were
omitted of discussion in [3] will be wholly generalized. Theorem 1,
Theorem 2 and Theorem 3 below correspond to Lemma 9, Lemma 10
and Theorem 8 in [2] respectively.

As for the definitions of terms such as compatible family of mor-
phisms, finitary objects and ultraproducts, refer to [3], and for more
basic terms of categories, to Isbell [1].

§ 1. Let € be an abstract locally small category which is complete
to the both sides, Ob(C) the collection of all its objects, and for A4,
B e 0b(Q), €(A, B) the set of all morphisms from A to B.

Definition. For objects G and B, G is said to separate B, if for
any coterminal morphisms f, f/: BB’ such that f+f’/, there exists
an s: G—B such that fs+f’s. An object B is called finite, if there
exists a G € Ob(€) such that G separates all powers of B and €(G, B)
consists of only finite number of morphisms. G is said to represent the
finiteness of B.

Theorem 1. If an object B is finite, then the diagonal map d: B
—B*|D to an ultrapower is epimorphic for any set A and its ultrafilter
D.

Proof.
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Agsume f, f': BY/D3X and f+ f’. Since B*/D is the direct limit
of the product system over D, there exists a & ¢ D such that fr®+ f'=n?
where 7 : B5—B4/D is the canonical injection. Let G be the object
that represents the finiteness of B. Then there exists an 2 : G—B such
that fr®h==f'n°h. For £c &, let nf: B5—>B.(=B) be the canonical
projection and for be@(G,B), put 5,={¢ e 5|afh=>b}. Then since
&(@G, B) is finite, there exists one and only one b ¢ €(G, B) such that
g,eD. Let nf,: B5—B*® be the projection, and put »’'=z5,h. Then
for every & € 5,, we have nf*h’=b and fr"*h'+ f'z%h'. Hence h'=d**D,
where dg: B—B?* is the diagonal morphism such that z{d;=1;, for
every & € £, and we have fr®'d; b+ f'n5dzb. Since d=n*d; for £ D,
we have fdb=+ f’db, and hence fd=+ f'd. q.e.d.

Theorem 2. If B is finitary and finite, then the diagonal map
d: B—B*/D is an isomorphism.

Proof.

BYD

Let G be an object that represents the finiteness of B, and assume
e D. Since G separates Bf, a morphism Y—B? that divides all mor-
phisms in €(G, B) must be epimorphic. This means that €(G, B%)
covers B (cf. [3]). For each g: G—B? there exists one and only one
b € €(G, B) such that the set 5,(9)={£ € 5|nfg=>} belongs to D. Put
¢z(9)=>b. Then the set of pairs {(g, vs(9))| 9 € &(G, B*)} is finitely com-
patible. Indeed, for g, 9, - - -, 9. € €&(G, B®) the set 5,=\3., &,,(g:) is
not void, and for & € 5, we have zfg,=¢:(g:) for k=1,2,...,n. Since
C(G, B®) covers Bf and B is finitary, there exists an ¢®: B¥—B such
that efg=¢;(g9) for every ge &(G,B*). In general, if 5,5 ¢ D and
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E’'C H, then, putting ¢’=r=f.g, we have =nf'9g’==fg for £ 5. Hence
the b e €(G, B) such that 5,(9) e D is the same as the one such that
F(9)eD. Hence efg=ef'g’=e"n%,g for all g: G—-B%. Since G
separates B%, we have ef=e*'r%,. Now particularly, for b e &(G, B)
we have ¢(d;0)=b, i.e., e*d;b=>b. Again, since €&(G, B) covers B, we
have e®d;=1; for all £e D. Now e“: B*—B induces an e¢: B‘/D—B
such that e®=ex® for all e D. Thus we have 1;=e*d;=erx’d;=ed
and d is a left reversible epimorphism, and hence an isomorphism.
q.e.d.

Lemma. If B is finitary and finite, then for any morphism f: A
—B and an ultrapower A4/D of A, there exists a g: A4/D—B such
that f=gd where d: A—A*|D is the diagonal map.

Proof. In general a morphism f: A— B naturally induces a mor-
phism f*: A*—B?* for any index set 5, and hence a morphism g: A4/D
—B*/D with which we have the commutative diagram

A—% o =7 pp
f fe g
B BE B4D .
Particularly, if B is finitary and finite, then the row B—Bf—B4/D is
an isomorphism. Hence f=gr®d;=g9d. q.e.d.

Theorem 3. If A is strongly finitary (cf. [3]), then the diagonal
map d: A—A*/D is an extremal monomorphism.

Proof.
A d AYD
e g gv
LB, L B,

Since A is strongly finitary, it is an extremal subobject e: A—II,B,
of a direct product, of which the components B, are all finitary and
finite. Letting p,: II,B,—B, be the canonical projection, each pe: A
—B, determines a g, A4/ D—B, such that p,e=g,d by the lemma above.
Now those g, determines a g: A4/D—II B, such that p,g=g, for all .
Now p,9d=g,d=p,e for all v and hence gd=e. Thus d is an initial
factor of an extremal monomorphism e, and hence an extremal mono-
morphism itself. q.e.d.

Now all theorems discussed in [2] for concrete categories were
generalized into abstract categories. Here we add a theorem that
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shows some properties naturally expected for the notion of finiteness.

Theorem 4. Let B be o finite object. Then

(i) G(B, B) consists of a finite number of morphisms, and

(ii) 4f m: B—B is monomorphic, then it is epimorphic, and vice
versa.

Proof. Let G be an object that represents the finiteness of B.

(i) We shall show that if (@, B) consists of n morphisms, then
C(B, B) contains n" morphisms at most. Indeed, by the principal
covariant representation h¢ (cf. [1]), each f: B—B induces an endomor-
phism Ar°(f): €(G, B)—-C&(G, B). Since there are at most »" endomor-
phisms of €(G, B), if €(B, B) contains more than »* morphisms, there
must be two f, f’ € €(B, B) with f=f’ such that r%(f)=h°(f"), that is,
f9=7r"g for every g € €(G,B). This contradicts that G separates B.

(ii) Assume that m: B—B is monomorphic. Then its covariant
principal representation by G, hé(m): €(G, B)—¢€(G, B), is one-to-one.
Since €(G, B) is finite, it is also onto. If u,v: B—X and ##v, then,
since G separates B, there exists an f: G—B such that uf+vf. Since
hS(m) is onto, there exists a ¢g: G—B such that f=mg. Now we have
umg+vmg and hence um=+vm. The converse can be proved similarly.

q.e.d.
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