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66. A Remark on Picard Principle. 11

By Mitsuru NAKAI
Department of Mathematics, Nagoya Institute of Technology

(Comm. by Koésaku YOSIDA, M. J. A., May 9, 1975)

The purpose of this note is to announce two results on the Picard
principle in the unpublished papers [10] and [11] which will be pub-
lished later elsewhere.

1. A nonnegative locally Hoélder continuous function P(z) on
0<|2|<1 will be referred to as a density on 2: 0<|z|<1. The elliptic
dimension of a densgity P on 2 at : 2=0, dim P in notation, is the
dimension of the half module & of nonnegative solutions of du=Pu
on 2 with vanishing boundary values on 92: |2|=1. More precisely,

let &, be the convex set of u ¢ P with the normalization J% [u,(ret®)],..do
0

=-—1, Then we define
(1) dim P=#(ex[P\])
where ex[P,] is the set of extreme points of &, and # denotes the
cardinal number. We say that the Picard principle is valid for P at
0 if dim P=1. The study of Picard principle is initiated by Picard,
Stozek, and Bouligand. The present formulation as well as the first
step to a systematic study is taken by Brelot [1]. For further develop-
ments and related works we refer to Heins [3], Ozawa [12], [13],
Hayashi [2], Nakai [6]-[9], Kawamura-Nakai [5], among others. The
first of our announcements is the following practical test of the Picard
principle [10]:

Theorem. The Picard principle is valid at 6 for any finite density
P on 2, i.e. for any density P with the following property

(2) L P)dedy<oco  (z=z+iy).

We shall give an outline of the proof of the above in no. 4. The
proof is based on a general theory on the Picard principle originally
obtained by Heins [3] and Hayashi [2]. We state this in the next no.

2. Let 2 be an end of an m dimensional (m>2) C* Riemannian
manifold, i.e. 2 is a manifold with a compact smooth relative boundary
92 and a single ideal boundary compact 6. A typical example is the
one in mo. 1: 2:0<|2|<1, 92:|2|=1, §:2=0. Consider an elliptic
differential operator L on 2 given by
(3) Lu(z) = du(x) + b(x) - Fu(w) 4 c(x)ulx)
for ue C¥Q), where 4 is the Laplace-Beltrami operator on the
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Riemannian manifold, I/ the gradient, b(x) a covariant vector of class
C? on 2 and of class C' on £, and c¢(x) a locally Hélder continuous
function on 2. The elliptic dimension of L at §, dim L in notation, is
given, as in (1), by the following:

(4) dim L=4#(ex[P,])

where &, is the convex set of nonnegative solutions # of Lu=0 on Q
with vanishing boundary values on 902 and with the normalization

I (@u/on)dS= —1 where 9/on is the inner normal derivative and dS
9

the surface element of 2. We say that the Picard principle is valid
for L at ¢ if lim,_, w(x) exists for every bounded solution % of Lu=0
on a neighborhood of ¢ in 2. We know that dim L>0 if and only if
dim L*>0 where L* is the adjoint operator to L. In this case there
exists a positive solution v of L*u=0 on 2 with boundary values 1 on
092. We denote by e; the smallest of such functions v. The associated
operator L with L in (3) is then given by

(5) Lu(x) = du(x) + (7 log ek(x) —b(x)) - Pu(x)

for u e C%(2). Concerning an operator L and its associated operator
L we have the following duality relation [11],* to announce which is
our second purpose of this note:

Theorem. The Picard principle is valid for an operator L at 6 if
o;:nd only if the Riemann theorem is valid for the associated operator

at é.

3. We state an outline of proof of the above. Let 2* be the
Martin compactification of 2 with respect to L (cf. e.g. Itd [4], Sur [14])
and B be the Banach space of bounded solutions of Lu=0 with con-
tinuous boundary values on 92. We can see that Pc C(Q*) and
_@I (2* — Q) separates points in Q* — 2. From this the assertion follows.

As an application of the above theorem we state the following
rather pathological example. Assume that the harmonic dimension
of §is 1, i.e. dim4=1. The 2 in no. 1is an example of such. Con-
gider an operator L, on 2 given by
(6) Lou(x) =4u(x) 4V log eX(x) - Fu(x) + c(x)u(x)
for u e C¥(£2) where c(x) is a locally Holder continuous function on 2
such that the equation du(x)=c(x)u(x) posseses a solution >0 on 2
with boundary values 1 on 912, and ¢.(x) is the smallest of such functions
u. This is the case, for example, when ¢(x)>0 on 2. By a direct
computation we see that Ifc=A and therefore
) dim L,=1.

Observe that the coefficients of L, can have arbitrarily high order

*  This is based on an invited hour lecture at the Central Section Meeting of
the Mathematical Society of Japan in December, 1974.
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singularities at 6 and yet (7) is valid. This also adds an example to
[9] to show the complexity of the elliptic dimension.

4, Sketch of proof of Theorem in no. 1. Let e=ep be the P-unit,
i.e. e is the unique bounded solution of dJu=Pu on Q2 with boundary
values 1 on3f2. Then the associated operator L with L=4—P is given
by
(8) Lu(z) = du(z) +2F log e(2)- Fu(z)
for ue C¥(2). Let u be a bounded solution of Lu=0 on 2, or more
generally a function with the following property:

m(r) <u(2) <M(r)

on 0<|z|<r for every e (0,1] where m(r)=min, ., u(z) and m(r)
=max,, ., #(z). We can then show that lim,_, u(2) exists if ue C'(2)
and satisfies

(9) Lqu(z)]z dady < oo.

The condition (9) is satisfied for every bounded solution % of Lu=0 on
R if the coefficient of (8) has the following property:

(10) j |V log e(2)[ dady < co.
2
In general we have the following inequality
11 L |V log e(2)|* dxdy gf P()(1—e(2)dxdy.
2

Therefore the condition (2) implies (10) by (11) and a fortiori the
Riemann theorem is valid at & for L in (8). By the theorem in no. 2
we conclude that the Picard principle is valid for L, i.e. for the finite
density P at 4.
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