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119. Theory o H.valued Fourier Hyperunctions

By Yoshifumi ITO*) and Shigeaki NAGAMACHI**)

(Comm. by Kinjir5 KUNU(I, M. $. A., Sept. 12, 1975)

0. Recently the theory of vector valued hyperfunctions has been
developed by Ion, P.D.F. and T. Kawai [1]. It has been done by the
method of ’soft analysis’ in parallel with Sato’s theory of hyperfunctions
(see Sato, M. [8]). In this paper, we construct the theory of vector
valued Fourier hyperfunctions by the method analogous to Kawai’s
method of constructing the theory of Fourier hyperfunctions (see
Kawai, T. [3], [4]). It is known that this theory of vector valued
Fourier hyperfunctions is useful in its applications to some problems
in the quantum field theory (see Nagamachi, S. and N. Mugibayashi [7]).

We construct the sheaf n of H-valued Fourier hyperfunctions
over D as the n-th derived sheaf of ( with support in D, where D
is the radial compactification of R" (see Kawai, T. [4]) and H is a
separable complex Hilbert space and "( is the sheaf of slowly increas-
ing H-valued holomorphic functions OverD J-L--R (see Ito, Y. and
S. Nagamachi [2]).

Next we realize H-valued Fourier hyperfunctions with supports
in a compact set K in Dn as continuous linear operators from _(K) to
H (as to (K), see Kawai, T. [4]). Namely, we show that the space
H:(V, nO) of H-valued Fourier hyperfunctions with supports in K is
isomorphic to the space L((K) H) of 11 continuous linear operators
from (K) to H equipped with the topology of bounded convergence.
We also show that the space H:(V,n() is isomorphic to the tensor
product H:(V, )H of the space H:(V, ) of scalar valued Fourier
hyperfunctions with supports in K and the Hilbert space H. These
facts are very interesting in comparison with the fact that the spaces
of some kinds of vector valued functions and the spaces of vector
valued distributions introduced by L. Schwartz have the same prop-
erties.

The sheaf n is a flabby sheaf and its restriction to R coincides
with the sheaf H of H-valued hyperfunctions over R, and its global
sections are stable under Fourier transformations. Hence any H-
valued hyperfunction on R can be extended to an H-valued Fourier
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hyperfunction on D and then we can consider its Fourier transfor-
mation. We can prove an analogue of the Paley-Wiener theorem for
Fourier-Carleman-Leray-Sato transformation.

1. In this section, we shall mention some vanishing theorems
and duality theorems of cohomology groups with or as their
coefficient sheaves (as to ( and, see Ito, Y. and S. Nagamachi [2]).
We shall also mention relative cohomology groups with support in a
compact set K in D -R. They are generalizations of Oka-Cartan
Theorem B and Malgrange’s theorem and Serre’s theorem and
Martineau-Harvey’s theorem.

Theorem 1.1 (Oka-Cartan Theorem B). For any -pseudoconvex
domain t2 inD4--Z]Rn, we have Hs(t2, H)=O (S_>_l).

Theorem 1.2. Let K be a compact set in D. Then Hp(K,H_O)
=0 (p_>-D.

Theorem 1.3 (Malgrange). Let 2 be an open set inD 4-----R.
Then H(D, H() =0.

Theorem 1.4 (Serre). Let D be an open set in Dn-ZR. If
dimH(2,()<c (p_>_l), then (H([2, H))’-H-(2,_) for ]--0,1,
.., n, where H([2, O_) denotes the p-th cohomology group with com-

pact support.
Theorem 1.5 (Martineau-Harvey). Let K be a compact se$ in

D 4Z-R for which HP(K, H_O) =0 holds (p >__ 1). Let V be an open
neighbourhood of K. Then we have H(V,)=0 (p:k:n) and H(V,)
--(H(K))’, where H(V,H) denotes the p-th relative cohomology
group with support in K.

2. In this section, we shall mention an analogue of Runge’s
theorem.

Theorem 2.1. Let K be a compact set in D. Then H.___(D)
is dense in _(K).

3. In this section, we shall mention the pure-codimensionality
of Dn with respect to (. Then we shall define the H-valued Fourier
hyperfunctions and the sheaf of H-valued Fourier hyperfunctions
over D and study some of their properties.

Theorem 3.1. Let [2 be an open set in D. Let V be an open set
inD4-R which contains t2 as its closed subset. Then H(V, H)
=0 (p#n).

This theorem shows that D is purely n-codimensional with respect
to the sheaf (. This is an analogue of Sato’s theorem on the pure-
codimensionality of R with respect to the sheaf ( over C of germs
of holomorphic functions.

Definition 3.2. Let/2 and V be as in the Theorem 3.1. Then we
define g(9), the space of H-valued Fourier hyperfunctions on 9, by
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H(V, C)). (By the excision theorem the space _() is independent
of the choice of V.)

Theorem 3.:). The presheaf {H_()} constitutes a flabby sheaf
over D, whose restriction to R coincides with the sheaf of H-valued
hyperfunc$ions over R.

Definition 3.4. We denote by H_ the sheaf {_(/2)} over D and
call it the sheaf of H-valued Fourier hyperfunctions over D.

Theorem 3.5. Let K be a compact set in D. Then H(V,"C))
H-- (_O(K)).Theorem 3.6. Le$ be an open se$ in D. Le$ V be an -pseudoconvex neighbourhood of such $ha$ V FD--i2. Le V (]

--0, 1, ..., n) be defined by Vo--V and V-{z e V; Im z:k=0} (]-1,2,
n) Pu c-V { }0 and -{V}__ Then- v)/__(C, v).H(V, C))-H(C-V, c-g’, )- C)(C=
Next we will show that H-valued Fourier hyperfunctions with

supports in a compact set K in D can be realized as continuous linear
operators from _O(K) to H.

Theorem 3.7. Let K be a compact set in D. Then _O(K) is a
nuclear space and we have H(V, Cg)L((K) H).

Theorem 3.8. Le K be a compact se in D. Then H(V, (C)) is
a nuclear space and we have H(V,g)-H.(V, )H.

Corollary 3.9. Let K be a compact set in D. Then HO_ (K)--O_ (K)
(R)H.

4. In this section, we introduce the notion of the Fourier trans-
formation of the elements of (D).

Proposition 4.1. If we define to by .I e<’>t(x)dx for foe .
--_O(D), then gives a topological isomorphism from . to (_P..

Definition 4.2. Le p be an element of L(!. H), then we define
*p by the formula *p(t)--p(t)(vt e !.).

Theorem 4.3. Every element [ e L(, H) can be decomposed
as/=,:/, where/ e L(O_(K) H) and K denotes the closure of
]-th quadrant in D.

If we defiae Vo--D X /-Z-iI, V=D X z-Z-{y e I y:k=0} (where
I={--l<y<l}), c(]--{V)=0 and cX/’=[V}=, we obtain the isomor-
phism H"n(D X /- 1I, nC) H(c(7, c-T/’, nC) by Leray’s theorem (see
Komatsu [6]). Thus we can represent any element Z of H(D
X #’-iI,nC) by some element in n-C)(= V), which we write by
{, ..., .}=[].

Definition 4.4. Using the decomposition of # of the Theorem 4.3,
we defiae /={F()}, which is aa elemeat of H"(c-(7, c(7’, C). Here
F()-(--1)+z(e<,>) (Im belongs to the ]-th open quadrant). We
call this Fourier-Carleman-Leray-Sato transformation.
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Then we have
Theorem 4.5. ff =if*.
Then we can prove an analogue of the Paley-Wiener theorem

for Fourier-Carleman-Leray-Sato transformation (see Ito, Y. and
S. Nagamachi [2]).
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