169. Approximation Theorem on Stochastic Stability

By Kunio NISHIOKA

Tokyo Metropolitan University

(Comm. by Kôsaku Yosida, M. J. A., Oct. 13, 1975)

§ 1. This paper treats the approximation theorem on the stability theory of dynamical systems given by stochastic differential equations. Consider a dynamical system in \mathbb{R}^n :

(1)
$$dx_i(t) = \sum_{k=1}^n \sigma_{ik}(x(t)) dB_k(t) + b_i(x(t)) dt$$
 (i=1,...,n)

(in this paper, we always assume that coefficients of (1) are Lipschitz continuous). If we assume that for $m \ge 1$

(2)
$$\begin{cases} \sigma_{ik}(x) = \tilde{\sigma}_{ik}(\lambda) |x|^m + o(|x|^m) \\ b_i(x) = \tilde{b}_i(\lambda) |x|^{2m-1} + o(|x|^{2m-1}) & |x| \to 0, \end{cases}$$

where $\lambda = x/|x|$, then the first approximation of (1) is defined by (3) $dx_i(t) = \sum_k \tilde{\sigma}_{ik}(\lambda(t)) |x(t)|^m dB_k(t) + \tilde{b}_i(\lambda(t)) |x(t)|^{2m-1} dt.$

Following to Khas'minskii [2], we call x(t) asymptotic stable in probability if $\lim_{|x|\to 0} P_x \{\lim_{t\to\infty} |x(t)|=0\}=1$, asymptotic unstable in probability if $P_x \{\lim_{t\to\infty} |x(t)|=\infty\}=1$ for all $x \ (\neq \{0\})$, divergent in probability if $P_x \{\sup_{t>0} |x(t)| \ge \varepsilon\}=1$ for all $x \ (\neq \{0\})$ and small $\varepsilon > 0$.

The main theorems are:

Theorem 1. If the solution of (3) is asymptotic stable in probability, then that of (1) is so.

Theorem 2. If the solution of (3) is asymptotic unstable in probability, then that of (1) is divergent in probability.

When m=1, the results have been already proved by Khas'minskii [2] and Pinsky [4].

In §2 we sketch proofs of Theorems 1 and 2. In §3 they are applied to a limit behaviour of a stochastic process on a two dimensional compact manifold, which is useful for studying the stability of three dimensional linear systems (see [1]).

Acknowledgement. The author would like to express his hearty gratitude to Professor M. Motoo for his suggestions.

§ 2. Remark 1. In this section it will be proved that the stability of (3) is equivalent to that of

(4)
$$dx_i(t) = \sum \tilde{\sigma}_{ik}(\lambda(t)) |x(t)| dB_k(t) + \tilde{b}_i(\lambda(t)) |x(t)| dt.$$

Thus, a little modification of Khas'minskii's sharp stability criterion formulated in [1] is applicable to (3).

K. NISHIOKA

Remark 2. If $\sigma_{ik}(\lambda) \equiv 0$ and $b_i(\lambda) \equiv 0$ in (3), then the solution of (3) is not asymptotic stable in probability nor asymptotic unstable.

Outline of proofs of Theorems 1 and 2. Define $T(t) = \int_0^t |x(u)|^{2m-2} du$. Since $P_x\{0 \le |x(t)| \le \infty, t \ge 0\} = 1$ (see [2]), $T^{-1}(t)$ is well defined. By the time substitution $T^{-1}(t)$, (1) and (3) are respectively transformed into

(5)
$$dx_{i}(T^{-1}(t)) = \sum_{k} \frac{\sigma_{ik}(x(T^{-1}(t)))}{|x(T^{-1}(t))|^{m-1}} d\tilde{B}_{k}(t) + \frac{b_{i}(x(T^{-1}(t)))}{|x(T^{-1}(t))|^{2m-2}} dt,$$
$$dx_{i}(T^{-1}(t)) = \sum_{k} \tilde{\sigma}_{ik}(\lambda(T^{-1}(t))) |x(T^{-1}(t))| d\tilde{B}_{k}(t)$$
$$+ \tilde{b}_{i}(\lambda(T^{-1}(t))) |x(T^{-1}(t))| dt,$$

where $\tilde{B}(t)$ are suitable Brownian motions. Now the theorems follow from a slight modification of Theorems 7.1.1 and 7.2.3 in [2].

Especially, if coefficients of (1) are C° -class in some neighbourhood of $\{0\}$, and if $\sigma_{ij}(0)=0$ and $b_i(0)=0$, then they are expanded as

$$\sigma_{ij}(x) = \sum_{k_1} \sigma_{ijk_1} x_{k_1} + \sum_{k_1, k_2} \sigma_{ijk_1k_2} x_{k_1} x_{k_2} + \cdots,$$

$$b_i(x) = \sum_{k_1} b_{ik_1} x_{k_1} + \sum_{k_1, k_2} b_{ik_1k_2} x_{k_1} x_{k_2} + \cdots.$$

Let $M_{\sigma} = \min \{s: \max_{i,j,k_1,\dots,k_s} | \sigma_{ijk_1\dots k_s} | \ge 0\}, M_b = \min \{s: \max_{i,k_1,\dots,k_s} | b_{ik_1\dots k_s} | \ge 0\},\$ and $L = \min \{\frac{M_b + 1}{2}, M_{\sigma}\}.$ Set (6) $d\hat{x}_i(t) = \sum_j \hat{\sigma}_{ij}(\hat{\lambda}(t)) | \hat{x}(t) |^L dB_j(t) + \hat{b}_i(\hat{\lambda}(t)) | \hat{x}(t) |^{2L-1} dt,$

where

$$\hat{\sigma}_{ij}(\lambda) = \begin{cases} \sum_{k_1, \dots, k_L} \frac{\sigma_{ijk_1 \dots k_L} x_{k_1} \cdots x_{k_L}}{|x|^L} & L \text{ is integer} \\ 0 & L \text{ is not integer}, \end{cases}$$
$$\hat{b}_i(\lambda) = \sum_{k_1, \dots, k_{2L-1}} \frac{b_{ik_1 \dots k_{2L-1}} x_{k_1 \dots x_{k_{2L-1}}}}{|x|^{2L-1}}.$$

Then (2) always holds for coefficients in (1) and (6), with m = L.

§ 3. Let M be a two dimensional, compact, analytic manifold. A diffusion process $\pi(t)$ on M is given by the stochastic differential equations, defined on each local chart $(U_{\alpha}, \Psi_{\alpha})$ (see [5]),

(7)
$$\Psi_{\alpha}(\pi(t)) = \Psi_{\alpha}(\pi(s)) + \int_{s}^{t} a_{\alpha}(\Psi_{\alpha}(\pi(u))) dB(u) + \int_{s}^{t} b_{\alpha}(\Psi_{\alpha}(\pi(u))) du.$$

Assume that the coefficients $\{a_{\alpha}, b_{\alpha}\}$ in (7) are C^{*}-class. (For stochastic differential equations induced by Khas'minskii's sharp stability criterion, this condition always holds and M is the unit spherical surface, see [1] or [4].)

Let a point q_0 on M be such that

(8) $||(a_{\alpha}a_{\alpha}^*)(\Psi_{\alpha}(q_0))||=0 \text{ and } |b_{\alpha}(\Psi_{\alpha}(q_0))|=0.$

For simplicity, let $\Psi_{\alpha}(q_0) = \{0\}$. If $x(t) \equiv \Psi(\pi(t))$, then the approximation of (7) is given by (6) in a neighbourhood of $\{0\}$. By Remark 1, we

Suppl.]

may assume that L=1 in (6). After extending naturally (6) to the whole space R^2 , we have (see [1])

(9)
$$\lim_{t\to\infty}\frac{1}{t}\log|\hat{x}(t)| = \lim_{t\to\infty}\frac{1}{t}\int_0^t Q(\hat{\lambda}(u))du \quad \text{a.s.},$$

where $\hat{\lambda}(t) = \hat{x}(t)/|\hat{x}(t)| = (\cos \hat{\theta}(t), \sin \hat{\theta}(t))$ and Q is a function obtained by Ito's formula.

Following to [3], we can really compute the right hand side of (9), which we denote by J_{q_0} . In general, J_{q_0} is depending on a starting point of $\hat{x}(t)$ and random. However if we assume that (10) $\|(\hat{\sigma}\hat{\sigma}^*)(\lambda)\| > 0$ for any λ ,

then J_{q_0} is a constant (see [3]).

From Theorems 1 and 2, we see that $\pi(t)$ is asymptotic stable (divergent) in probability at q_0 if $J_{q_0} < 0$ (>0). From those and the other results formulated in [2], we have:

Theorem 3. Let q_i $(i=1, \dots, m)$ be such points as (8) and (10) hold. Let rank $[(aa^*)(\Psi(q))]=2$ for all $q \ (\neq q_i)$.

(i) If $J_{q_i} > 0$ for $1 \leq i \leq m$, then $\pi(t)$ is recurrent on $M - \{q_i : i = 1, \dots, m\}$, i.e., for any open set $\mathfrak{Q} \subset M$,

$$P_q\{\tau_{\mathfrak{o}} < \infty\} = 1 \qquad q \in \{q_i : i = 1, \cdots, m\},$$

where $\tau_{\mathfrak{D}}$ is the first hitting time for \mathfrak{O} .

(ii) If
$$J_{q_i} < 0$$
 for $1 \leq i \leq j$ and if $J_{q_i} > 0$ for $j+1 \leq i \leq m$, then
 $P_q \{ \lim \pi(t) \in \{q_i : i=1, \dots, j\} \} = 1$

for all $q \in \{q_i : i=j+i, \cdots, m\}$.

References

- [1] Khas'minskii, R. Z.: Necessary and sufficient conditions for the asymptotic stability of linear stochastic systems. Theory of Prob. Appl., 12, 167-172 (1967).
- [2] ——: The Stability of Systems of Differential Equations with Random Parametric Excitation. Nauka (1969) (in Russian).
- [3] Nishioka, K.: On the stability of two-dimensional linear stochastic systems (to appear).
- [4] Pinsky, M. A.: Stochastic stability and the Dirichlet problem. Comm. Pure Appl. Math., 27, 311-350 (1974).
- [5] Tanaka, H.: Local solutions of stochastic differential equations associated with certain quasilinear parabolic equations. J. Fac. Sci. Univ. Tokyo, 14, 313-326 (1967).