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169. Approximation Theorem o Stochastic Stability

By Kunio NISHIOKA
Tokyo Metropolitan University

(Comm. by Ksaku Yosm, M. . ., Oct. 18, 17)

1. This paper treats the approximation theorem on the stability
theory of dynamical systems given by stochastic differential equations.
Consider a dynamical system in R"

( 1 ) dx,(t) , a,(x(t))dB(t) / b,(x(t))dt (i= 1, ..., n)

(in this paper, we always assume that coefficients of (1) are Lipschitz
continuous). If we assume that for m>__ 1

+ o(lxl( 2 )
(b,(x) ,(2)Ix[-+ o([xl-)

where --x/Ixl, then the first approximation of (1) is defined by
( 8 ) dx,(t) ] #**(2(t)) Ix(t)I dB(t) + ,(2(t)) Ix(t)]2- dr.

Following to Khas’minskii [2], we call x(t) asymptotic stable in
probability if lim P{limlx(t)l=O}=l, asymptotic unstable in prob-

Ix I-0 t-

ability if P {lim Ix(t)l=}=l for all x (=/={0}), divergent in probability

if P {sup x(t)l>} 1 for all x (=/: {0}) and small >0.
>0

The main theorems are"

Theorem 1. If the solution of (3) is asymptotic stable in prob-
ability, then that of (1) is so.

Theorem 2. If the solution of (3) is asymptotic unstable in prob-
ability, then that of (1) is divergent in probability.
When m= 1, the results have been already proved by Khas’minskii [2]
and Pinsky [4].

In 2 we sketch proofs of Theorems 1 and 2. In 3 they are
applied to a limit behaviour of a stochastic process on a two dimensional
compact manifold, which is useful for studying the stability of three
dimensional linear systems (see [1]).
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2. Remark 1o In this section it will be proved that the stability
of (3) is equivalent to that of
( 4 ) dxt(t)= ,(2(t))[x(tl) dB(t)+b,(2(t))Ix(t)l dr.

Thus, a little modification of Khas’minskii’s sharp stability criterion
formulated in [1] is applicable to (3).
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(6)

where

Remark 2. If a(2)--0 and b(2)--0 in (3), then the solution of (3)
is not asymptotic stable in probability nor asymptotic unstable.

Outline of proofs of Theorems 1 and 2. Define T(t)

=.[olx(u)l-du. Since P{O<[x(t)[<oo, t>=O}=l (see [2]), T-(t) is

well defined. By the time substitution T-(t), (1) and (3) are respec-
tively transformed into

a(x(T-(t))) d(t) + b(x(T-(t)))dx(T-(t))
Ix(T-(t))- [x(T-(t))- dr,

dx(T-(t)) (2(T-(t))) x(T-(t))] dB(t)
(5)

+ b((T-(t)))]x(T-(t))[ dr,
where B(t) are suitable Brownian motions. Now the theorems follow
from a slight modification of Theorems 7.1.1 and 7.2.3 in [2].

Especially, if coefficients of (1) are C-class in some neighbourhood
of {0}, and if a(0)=0 and b(0)=0, then they are expanded as

(x) x,+ x,x+...,

b(x) b,x,+ bxx+
k ,

Letn" ax ...0, Mmn" max
t, k,’",s ,,"",s

d(t) O(i(t)) I(t)I B(t) + (i(t)) I(t)I-
, a,...x,. .x L is integer

() ,,..., xl
0 L is not integer,

() E b,...,_,x,...x,_,,,...,_, ]Xl2L-

Then (2) always holds for coefficients in (1) and (6), with m=L.
3. Let M be a two dimensional, compact, analytic manifold.

A diffusion process (t) on M is given by the stochastic differential equa-
tions, defined on each local chart (U,) (see [5]),

(7) ((t))=(())+ ((()))gB()+ b((()))g.

Assume ha the eoeeiens {a, b} in (7) are C-elass. (Nor sto-
ehasie differential equations induced by Khas’minskii’s shar sabiliy
criterion, his condition always holds and M is the uni spherical sur-
face, see [1] or [].)

Le a oin q, on M be such
(8) ll(aaD((q0))ll=0 and Ib@(q0))l=0.
For simplicity, let (q0)={0}. If x(t)((t)), then the approxima-
tion of (7)is given by (6) in a neighbourhood of {0}. By Remark 1, we
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may assume that L--1 in (6). After extending naturally (6) to the
whole space R, we have (see [1])

( 9 ) lim --1 log ]:(t) lira _1 So Q(](u))du a.s.,

where ](t)----(t)/]:(t)]-- (cos (t), sin (t)) and Q is a function obtained
by Ito’s formula.

Following to [3], we can really compute the right hand side of (9),
which we denote by Jo. In general, J is depending on a starting
point of (t) and random. However if we assume that
(10) @a*)(2)[] > 0 for any 2,
then J is a eonstant (see [3]).

From Theorems 1 and 2, we see that () is asymptotic stable
(divergent) in probability at q0 if Jo<0 (> 0). From those and the other
results formulated in [2], we have"

Theorem 3. Le$ q (i=1, ...,m) be such points as (8) and (10)
hold. Let ran [(aa*)((q))]=2 for all q (q’s).

(i) If J,> 0 for 1i m, then () is recurrent on M-- {q" i 1,
.., m}, i.e., for any open se$ cM,

< 1 e ., m},
where is the first hitting time for .

(ii) If J,<0 for liE] and if J,>O for ]+lim, then

P {lim () e {q" i= 1,.. ,, ]}}= 1
for all q {q" i=j+i, ...,m}.
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