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A Note on Explosion of Branching Markov Processes
with Extinction
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(Comm. by K,6saku YOSlDA, M.J.A., March 12, 1976)

1o Preliminary. We discuss the explosion problem of branching
Markov process under extinction effect. Such a problem was not con-
sidered in [3] and [4], since the existence of extinction brings some
difficulty on the probabilistic consideration. ) The difficulty will be
removed through the auxiliary procedure which will be presented be-
low.

Let S be a locally compact Hausdorff space with the second coun-
tability. Let S be the topological sum of the symmetric product spaces
S, n=O, 1, , with S={} and S=(}. Let X=(9, Xt, P) be
a branching Markov process on the state space S in the sense of .[1].
For X define the extinction time by e0 inf {;Xt=} and the explosion
time by e=inf {t; Xt=z/}. 2) Let {Tt}t>0 be the semi-group of X acting
on Co(S). Set q(x)=limtTtO(x)=P(eo<c) for x eS, where for
each function f on S a function f on S is defined as follows; f(3)= 1,
f(z/)=0 and f(x)=f(x).., f(x) if x=[x, ...,x]eS(), n=l,2, ....
Throughout this article we assume
(Asm.) q(x) is a continuous function on S such that O< q(x)1, x e S.

Let us define the family of operators {t}t>0 for f e C0(S) with a
continuous function f on S such that O<f(x)<1 for x e S.

( 1 ) tf(x)-- 1 .{Tt(q + (1--q)f----(x)--q(x)}, x e S.
1--q(x)

Following [1] {t}t>O is uniquely extended to a branching semi-group
acting on Co(S), and we also denote the extension by {t}t>0. {t}t>O
determines a branching Markov process . on S (cf. [1]). We call the
process . the associated (branching Markov) process to X.
2. Results and the proof.

Lemma 1. Let be the associated process to X, then
(i) X is explosive if and only if is explosive.
(it) If : is explosive with probability one, then

1) For the terminologies used in our note, refer [3] and [4].
2) We define inf
3) C0(S)--{f; continuous function on S which vanishes at the infinities of ’},

where the infinities consist of / and the infinity of the one point compactification
of Sn), n=l,2,
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P (eo c or e c)= 1 for x e S.
ProoL (i) Setting f=l in (1), and letting tc, we have

( 2 ) /( c)=--1[P(e ) q(x)}, x e S.)
1--q(x)

(i) follows from (2).
(ii) Since P(=)=0 for x e S, we have from (2)P(e--)=q(x)
or x e S. Hence we have P(e )+P(e )=1 or x e S. Noting

{eo } {e}--, we obtain (ii).
Lemma 2. Let X be the (X,k,u)-branching Markov process,)

where the branching law is given by

( 3 ) (x, dy)=po(dy)+ p,...,(dy), x e S, dyeS,)

and p, n--0,2,3, ..., is a probability sequence. Suppose that
P(e )--q for x e S for some constant q e (0, 1). Then the associated
process is the (X, , )-branching Markov process, where

(x)=(1--)k(x) and (x dy)--

_
...(dy)

x e S, dycS,
where , n=l, 2,..., is the probability sequence determined by the
following identity

1 p(q+ (1-- q)) + P0-- q , 0< < 1.(4)

ProoL Here we are content with the following heuristic proof.
Let f be a suitably "smooth" unction on S with 0f(x)l or x e S,
then we have rom [1; III]

( g ) lim Tf() f() f()+() Po+ f()--f()
0 =

where is the infinitesimal oeraor of X. By the relation (1) between
{T} and {}0, and by (g)

lim f(m) f(z)

1 lim T(q+(1--q)f)()--(q+(1--q)f())(6) --1--q t0 t

(q+ (-qZ(z)) +o-q-Z(z)Z(I+() i-q
Le us rewrite he las erm of (6) using (4), hen we have

4) P.(,), eo and e are the probability measure, extinction time and explosion
time of X, respectively.

5) For the definition of (X,k,)-branching Markov process, refer [3].
6) /x(.) is a measure on S having a unit mass only on x.
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0 t l-p
Hence X is the (X, , )-branching Markov process (c. [1]).

Lemma 3. Let X be the same as in Lemma 2. Suppose that
P(rc)--I for x e S, where is the first branching time defined by
r=in {t; Xt S(} if Xo e S(. Then P(eo c)= q for x e S, where q
is the minimal root of the equation

F() P0 + , P$n, e [0, 1].

Our proo is essentially owe to [2] (refer also [5]), so we omit it.
Proposition. Let X--(W, Xt, Px) be a temporally homogeneous

Ldvy process on the real line R satisfying the condition

P0 (sup0<< Xt-- c)-- 1. Let k(x) be a non-negative continuous function
on R satisfying lim k(x)= c. Let :(x, dy)--p(dy) + (1--p)3,(dy)
(x e R, dyeR) for any constant p e (0, 1/2). ) Consider the (X, k, )-
branching Lgvy process X. Then
( i ) q(x)=Px(eac)=p/(1--p) for xeR.
(ii) The associated process 2 is the (X, (1--2p)k(x), 3,(dy))- branch-
ing Lgvy process.
(iii) If f( is explosive with probability one, then X is also explosive,
no with probability one but P(ec)--P(eo--c)=(1--2p)/(1--p)
for xeR.

Proof. To prove (i) check P(rc)=l or x e R, which ollows
rom

P(= c) limP(t)=lim v exp {--: k(X)ds}dP= 0.

by the condition given to X and k(x). Then by Lemma 3 we obtain
q(x) =_ p (ii) is a direct consequence o (i) and Lemma 2. (iii) is
a direct consequence o (i) and Lemma 1.

Remark. By the condition given to X and k(x) and by the branch-
ing law, Proposition I or 2 in [4] is well applicable on/ to obtain a
sufficient condition or the explosion with probability one.
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