28. On a Nonlinear Noncontractive Semigroup

By Naoki YAMADA

Department of Mathematics, Kobe University

(Comm. by Kôsaku Yosida, M. J. A., March 12, 1976)

1. Introduction and Theorem. Let X be a Banach space with norm $\|\cdot\|$. We consider an operator $A: D(A) \subset X \to X$ such that i) $D(A) \ni 0$, A0=0 ii) $R(I+\lambda A)=X$ for all $\lambda > 0$ iii) there exists a constant M > 0 such that for all $\lambda > 0$ and $x, y \in X$,

 $||(I+\lambda A)^{-1}x-(I+\lambda A)^{-1}y|| \le M ||x-y||.$

Let $J_{\lambda} = (I + \lambda A)^{-1}$ be Fréchet differentiable at every $x \in X$. Then $F(\lambda) = J'_{\lambda}[x + \lambda Ax] \in B(X, X) (x \in D(A))$ satisfies the first resolvent equation; $\lambda F(\lambda) - \mu F(\mu) = (\lambda - \mu) F(\mu) F(\lambda)$ (see [3] or [4]). Hence it follows that there exists a linear operator $A'[x]: D(A'[x]) \to X$ such that $F(\lambda) = (I + \lambda A'[x])^{-1}$. Such an operator A is said to be R-defferentiable and A'[x] the R-derivative of A at $x \in D(A)$.

The notion of R-differentiable operators was introduced by M. Iannelli to construct nonlinear noncontractive semigroups. In this note, we shall consider an R-differentiable opetator A such that A'[x] satisfies a hyperbolic-type condition. We shall show that the infinitesimal generator of a semigroup associated with A, coincides with A on a subspace of X. Only the result and an outline of its proof are presented here and the details will be published elsewhere. Our result is following

Theorem. Let A be an R-differentiable operator such that:

- (I) A'[x] is a closed linear operator for all $x \in D(A)$,
- (II) there exists a Banach space Y which is densely and continuously embedded in X,

(S₁) for any finite family
$$\{x_1, \dots, x_n\} \subset D(A)$$
,

$$\prod_{i=1}^n (I + \lambda A'[x_i])^{-1} \Big\|_X \leq M,$$

 $(\mathbf{S}_2) \quad (I+\lambda A'[x])^{-1}(Y) \subset Y \text{ for each } x \in D(A), \text{ and for } \{x_i\} \text{ stated in } (S_1),$

$$\left\| \prod_{i=1}^{n} (I + \lambda A'[x_i])^{-1} \right\|_{Y} \leq K_1,$$

(III)
$$Y \subset D(A), Y \subset D(A'[x])$$
 for each $x \in D(A)$, and
 $\|A'[x] - A'[y]\|_{Y,X} \le K_2 \|x - y\|.$

Here K_i , i=1, 2 are constants and $\|\cdot\|_X$, $\|\cdot\|_Y$, $\|\cdot\|_Y$, $\|\cdot\|_{Y,X}$ denote the norms in B(X, X), B(Y, Y), B(Y, X) respectively.

Then there exists a unique semigroup $\{G(t)\}_{t\geq 0}$ such that (a) $G(t)x = \lim_{n \to \infty} (I + (t/n)A)^{-n}x$ for all $t \geq 0$ and $x \in X$, No. 3]

- (b) $||G(t)x G(t)y|| \le M ||x y||$ for all $x, y \in X$,
- (c) G(t)G(s) = G(t+s), G(0) = I,
- (d) G(t) is strongly continuous in t,
- (e) $D_t^+G(t)y|_{t=0} = -Ay$ for all $y \in Y$.

Here D^+ denotes the right derivative in the strong topology of X.

It is shown in [4] that (a) \sim (d) of our theorem are consequences of only (S₁). To prove (e), we need some lemmas as [3] to represent G(t) in an integral form involving a one parameter family of linear operators. Almost all of our assumptions on A'[x] are similar to those of T.Kato [5]. The assumption " $Y \subset D(A)$ " in (III) may be seen unnatural, but we have the following

Proposition 1. Let the assumptions of the theorem be satisfied except " $Y \subset D(A)$ ". Then D(A) is dense in X.

2. Some lemmas. In the following, let all assumptions of the theorem be always satisfied. Let $C(T) = C([0, T] \times [0, 1] : X)$ be the space of continuous functions from $[0, T] \times [0, 1]$ to X. For any $u \in C(T)$ and any zero sequence $\{\lambda_n\}$ there exists an approximate sequence $\{u_n\}$ such that

$$\begin{split} u_n(t,\sigma) = & u_n(i\lambda_n, j\lambda_n) \in D(A) & \text{if } i\lambda_n \leq t < (i+1)\lambda_n \\ & \text{and} & j\lambda_n \leq \sigma < (j+1)\lambda_n, \\ & \lim_{n \to \infty} \sup_{(t,\sigma) \in [0,T] \times [0,1]} \|u_n(t,\sigma) - u(t,\sigma)\| = 0. \end{split}$$

(2.1)

Lemma 2. Let $u \in C(T)$ and $\{u_n\}$ be an approximate sequence for u. Then there exists

$$U\{u,\sigma\}(t,0)x = \lim_{n\to\infty\atop n\lambda_n\to t}\prod_{i=1}^n (I+\lambda_n A'[u_n(i\lambda_n,\sigma)])^{-1}x \quad for \ all \ x\in X.$$

Moreover, for $u, v \in C(T)$ and $y \in Y$, we have

(2.2) $\sup_{\substack{(t,\sigma)\in[0,T]\times[0,1]\\ \leq K_1K_2MT \|y\|_{Y}}} \|U\{u,\sigma\}(t,0)y - U\{v,\sigma\}(t,0)y\| \\ \leq K_1K_2MT \|y\|_{Y} \sup_{\substack{(t,\sigma)\in[0,T]\times[0,1]\\ \leq (t,\sigma)\in[0,T]\times[0,1]}} \|u(t,\sigma) - v(t,\sigma)\|.$

In particular, from this estimate, we see that $U\{u, \sigma\}$ is defined independently of the choice of the approximate sequence $\{u_n\}$.

For the proof, we have for $y \in Y$ and $m \leq n$

$$\begin{split} \prod_{i=1}^{m} (I + \lambda A'[u_{m}(i\lambda, \sigma)])^{-1}y &- \prod_{i=1}^{n} (I + \mu A'[u_{n}(i\mu, \sigma)])^{-1}y \\ &= \sum_{i=1}^{m-1} \beta^{n-i} \alpha^{i} \left(\sum_{(m-i,0)}^{(m,n)} \prod_{p=1}^{n} (I + \mu A'[u_{n}(c_{p}\lambda, \sigma)])^{-1} \right) \prod_{i=1}^{m-i} (I + \lambda A'[u_{m}(i\lambda, \sigma)])^{-1}y \\ &+ \sum_{i=m}^{n} \alpha^{m} \beta^{i-m} \left(\sum_{(1,n-i+1)}^{(m,n)} \prod_{p=1}^{i-1} (I + \mu A'[u_{n}(c_{p}\lambda, \sigma)])^{-1} \right) (I + \mu A'[u_{n}(\lambda, \sigma)])^{-1} \\ &\times \prod_{i=1}^{n-i} (I + \mu A'[u_{n}(i\mu, \sigma)])^{-1}y \\ &+ \mu \sum_{j=0}^{n-1} \sum_{i=0}^{(m-1)\wedge j} \beta^{j-i} \alpha^{i} \left(\sum_{(m-i,n-j)}^{(m,n)} \prod_{p=1}^{j} (I + \mu A'[u_{n}(c_{p}\lambda, \sigma)])^{-1} \right) \end{split}$$

N. YAMADA

$$\times (I + \mu A'[u_n((m-i)\lambda, \sigma)])^{-1} \{A'[u_n((n-j)\mu, \sigma)] \\ -A'[u_m((m-i)\lambda, \sigma)] \} \\ \times \prod_{i=1}^{n-j} (I + \mu A'[u_n(k\mu, \sigma)])^{-1}y.$$

Here $j \wedge i = \min \{j, i\}, \alpha = \mu/\lambda, \alpha + \beta = 1$. $\sum_{\substack{(i,j) \\ (i,j)}}^{(m,n)}$ is interpreted as follows: For any lattice point (k, l) $(k \ge 1, l \ge 1)$, we choose as admissible k-segments two line segments joining it to (k-1, l-1) or to (k, l-1). Then $\sum_{\substack{(m,n) \\ (i,j)}}^{(m,n)}$ runs over all of $\{c_p\}$, each $\{c_p\}$ denoting the shortest path of admissible segments from (m, n) to (i, j). Thus $\sum_{\substack{(m,n) \\ (i,j)}}^{(m,n)}$ contains $\binom{n-j}{m-i}$ terms in it. This formula is essentially due to [2]. In [2] it is obtained in a form of norm inequality for the case that $(I + \lambda A'[x])^{-1}$ is a contraction mapping. In our case, we use the linearity of operators to have the equality. Then the same method of [2] is applicable to prove Lemma 2.

Lemma 3. For any $u \in C(T)$, $U\{u, \sigma\}(t, 0)x$ which has been defined in Lemma 2, belongs to C(T) for each $x \in X$.

Definition 4. Let $u \in C(T)$ and $\{u_n\}$ be an approximate sequence for u. We define for $(t, s) \in [0, T] \times [0, 1]$

$$(G{T, x}u)(t, s) = \int_0^s U{u, \sigma}(t, 0)xd\sigma,$$

$$(G_n{T, x}u)(t, s) = \int_0^s \prod_{i=1}^n (I + \lambda_n A'[u_n(i\lambda_n, \sigma)])^{-1}xd\sigma.$$

By Lemma 3, $G{T, x}$ maps C(T) into itself.

Lemma 5. We have

 $\lim_{n\to\infty} \sup_{(t,\sigma)\in[0,T]\times[0,1]} ||(G\{T,x\}u)(t,s)-(G_n\{T,x\}u)(t,s)||=0.$

Lemma 6. Let T>0 be an arbitrary fixed number and, for $(t,s) \in [0,T] \times [0,1]$ and $y \in Y$, set $u(t,s) = \lim_{\substack{n \to \infty \\ n\lambda_n \to t}} (I + \lambda_n A)^{-n} sy$. u(t,s)

exists and belongs to C(T) by Theorem 3.1 of [4]. Then we have $(G{T, y}u)(t, s) = u(t, s).$

For the proof, we notice that $g_n(t,s) = (G_n\{T,y\}g_n)(t,s)$, where $g_n(t,\sigma) = (I + \lambda_n A)^{-i} \sigma y$ for $i\lambda_n \leq t < (i+1)\lambda_n$ and $0 \leq \sigma \leq 1$.

3. Sketch of the proof of (e).

First we have

$$\lim_{\lambda \to 0} (I + \lambda A'[J_{\lambda} \sigma y])^{-1} x = x \qquad for \ all \ x \in X$$

and, using this relation, we have

$$Ay = \int_0^1 A'[\sigma y] y d\sigma \qquad for \ y \in Y.$$

On the other hand, we notice that $D_t^+ U\{u, \sigma\}(t, 0)|_{t=0} = -A'[\sigma y]y$. Then by Lemma 6 and facts stated above, we get

$$\lim_{t\downarrow 0} (G(t)y-y)/t = \int_0^1 -A'[\sigma y]yd\sigma = -Ay.$$

104

References

- M. G. Crandall and T. M. Liggett: Generation of semigroups of nonlinear transformations on general Banach spaces. Amer. J. Math., 93, 265-298 (1971).
- [2] M. G. Crandall and A. Pazy: Nonlinear evolution equations in Banach spaces. Israel J. Math., 11, 57-94 (1972).
- [3] M. Iannelli: Opérateurs dérivables et semi-groupes non-linéaires non-contractifs. J. Math. Anal. Appl., 46, 700-724 (1974).
- [4] ——: Quelques remarques sur les semi-groupes non-linéaires non-contractifs. Lincei—Rend. Sc. fis. mat. e nat., 54, 452-456 (1973).
- [5] T. Kato: Linear evolution equations of "hyperbolic" type. J. Fac. Sci. Univ. Tokyo, Sec. I, 17, 241-258 (1970).