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Department of Mathematics, Kobe University

(Comm. by K6saku YOSIDA, M. . A., March 12, 1976)

1. Introduction and Theorem. Let X be a Banach space with
norm II’ll. We consider an operator A" D(A)cX-X such that i)
D(A) O, A0=0 ii) R(I+ 2A)--X for all 0 iii) there exists a constant
M0 such that for all 0 and x, y e X,

(I+ A)-lx--(I+A)-y <_M x-- y ].
Let J--(I+A)- be Fr4chet differentiable at every x eX. Then
F(2)=J[x + 2Ax] e B(X, X)(x e D(A)) satisfies the first resolvent equa-
tion;2F(2)--/F(/)=(--/)F(/)F(2) (see [3] or [4]). Hence it follows
that there exists a linear operator A’[x]’D(A’[x])-X such that F()
--(I+2A’[x])-. Such an operator A is said to beR-defferentiable and
A’[x] the R-derivative of A at x e D(A).

The notion of R-differentiable operators was introduced by M.
Iannelli to construct nonlinear noncontractive semigroups. In this
note, we shall consider an R-differentiable operator A such that A’[x]
satisfies a hyperbolic-type condition. We shall show that the infini-
tesimal generator of a semigroup associated with A, coincides with A
on a subspace of X. Only the result and an outline of its proof are
presented here and the details will be published elsewhere. Our result
is following

Theorem. Let A be an R-differentiable operator such that"
( I ) A’[x] is a closed linear operator for all x e D(A),
(II) there exists a Banach space Y which is densely and continuously

embedded in X,
(S) /or any finite/amily {x, ..., Xn}D(A),

(S) (I+ 2A’[x])-I(Y) c Y for each x e D(A), and for {x} stated in (SJ,

I-I (I / A’[xi]) -1 _K1,
i=1 Y

(III) YcD(A), YD(A’[x]) for each x e D(A), and
A’[x] A’[y] II,x

_
K x-- y

Here K, i-- 1, 2 are constants and I[" I[x, I[" [[r, [1" [[r,x denote the norms in
B(X, X), B(Y, Y), B(Y, X) respectively.

Then there exists a unique semigroup {G(t)}txo such that
(a) G(t)x=limn (I+(t/n)A)-x for all t>_O and x e X,
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(b) G(t)x- G(t)y -M x-- y for all x, y e X,
(c) G(t)G(s) G(t + s), G(0)-- I,
(d) G(t) is strongly continuous in t,
(e) D:G(t)ylt=o----Ay for all y e Y.
Here D/ denotes the right derivative in the strong topology of X.

It is shown in [4] that (a)(d) o our theorem are consequences of
only (S). To prove (e), we need some lemmas as [3] to represent G(t)
in an integral orm involving a one parameter amily of linear opera-
tors. Almost M1 o our assumptions on A’[x] are similar to those o
T.Kato [5]. The assumption "YcD(A)" in (III) may be seen unnatu-
ral, but we have the ollowing

Proposition 1. Let the assumptions of the theorem be satisfied
except "YcD(A)". Then D(A) is dense in X.

2. Some lemmas. In the ollowing, let all assumptions of the
theorem be always satisfied. Let C(T)-C([O, T] [0, 1] X) be the
space of continuous unctions rom [0, T][0,1] to X. For any
u e C(T) and any zero sequence {Rn} there exists an approximate sequence

{Un} such that
Un(t, a)--Un(iRn, ]’n) e D(A) if i2 <_ t (i + 1)2n

and ]n a (] + 1)Rn,
(2.1)

lim sup llUn(t,a)--u(t,a)ll--O.
(t,)

Lemma 2. Let u e C(T) and {u} be an approximate sequence for
u. Then there exists

U{u, a}(t, 0)x-- lim (I + 2nA’[un(i2n, a)])-lx for all x e X.
i=1

nnt

Moreover, for u, v e C(T) and y e Y, we have

sup U{u, a}(t, O)y- U{v, a}(t, O)y
(2.2)

GK1K2MT
(t, ) e E0,T E0,1]

In particular, from this estimate, we see that U{u, a} is defined inde-
pendently of the choice of the approximate sequence {Un}.

For the proof, we hve or y e Y and m_<n

(I+ 2A’[u(i2, q)])-ly_ (I q- [A’[u(i/,
i=1 i=l

E n-iOi E (I+ [A’[un(cp], 6)]) -1 (I / 2n’[um(i2,
i=l (m-i,0) p--1 / i=l

((re,n) i-1

/ o- [-[ (I + [A’[u,(c,R, a)])- (I +/A’[u,(R, a)])-i=m (1,n-i+l) p=l

n-i

[I (I+ [A’[un(il, a)])-ly
i=1

+/ fl-*a* (I+/A’[u,(c2, a)]) -1
j=0 4=0 \(m-i,n-j) p=l
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(I +/A’[u((m--i)2, a)])-{A’[u((n--])/, a)]
--A’[u((m-i)2, a)]}
n-j

[I (I+ [A/[Un(][, a)])-ly.
k=l

Here ]Ai=min {], i}, =//, +fl=l. (,(, is interpreted as ollows"
For any lattice point (k, l) (k>_l,/>_1), we choose as admissible k-seg-
ments two line segments joining it to (k--1, l--1) or to (k, l--1). Then

,,:) runs over all of {%}, each {%} denoting the shortest path of admis-

sible segments rom (m, n)to (i, ]). Thus ,(,,,) contains (n----)terms
in it. This formula is essentially due to [2]. In [2] it is obtained in a
orm of norm inequality or the case that (I + 2A’[x])- is a contraction
mapping. In our case, we use the linearity of operators to have the
equality. Then the same method o_f [2] is applicable to prove Lemma 2.

Lemma 3. For any u e C(T), U{u, a}(t, O)x which has been defined
in Lemma 2, belongs to C(T) for each x e X.

Definition 4. Let u e C(T) and {u} be an approximate sequence

for u. We define for (t, s) e [0, T] [0, 1]

(G{T, x})(t, )= 1-[ (I + iA’[(ii, )])-xg.
i=l

By Lemma g, G{T, x} maps C(T) into itself.
Lemma 5;. We have

lim sup (G{T, x}u)(t, s)--(G{T, x}u)(t, s)]1=0.
(t,) eE0,T]E0,]

Lemma 6. Let T) O be an arbitrary fixed number and, for
(t, s) e [0, T] [0, 1] and y e Y, set u(t, s) limn (I+ 2A)-nsy. u(t, s)

n2n-*t

exists and belongs to C(T) by Theorem 3.1 of [4]. Then we have
(G(T, y}u)(t, s)--u(t, s).

For the proof, we notice that g(t, s)--(G(T, y}g)(t, s), where
g(t,a)=(I+2A)-ay or i2<_t (i+ 1)2 and 0_a___l.

3. Sketch of the proof of (e).
First we have

lim (I+ 2A’[Jay])-x--x for all x e X
2--,0

and, using this relation, we have

Ay=: A’[ay]ydr for y e Y.

On the other hand, we notice that D: U{u,a}(t, O)lt=o----A’[ay]y.
by Lemma 6 and acts stated above, we get

lim (G(t)y- y) /t= [’ --A’[ay]yda= --Ay.
tO 0

Then
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