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79. On the Singularities of the Riemann Functions
of Mixed Problems for the Wave Equation
in Plane-Stratified Media. 1

By Mutsuhide MATSUMURA
Faculty of Science, Tokyo University of Education

(Communicated by Kosaku YOSIDA, M. J. A., June 8, 1976)

1. Introduction. The study on the singularities of the funda-
mental solutions (or Riemann funections) of mixed initial boundary value
problems for linear hyperbolic equation with constant coefficients in a
quarter space has been developed primarily by Duff [2] and afterward
by Deakin [1], Matsumura [6], Wakabayashi [9], Tsuji [8], especially
by Wakabayashi [10] and [11]. The purpose of this series of notes is
to show that the methods in [6], [8]-[11] are applicable to the study of the
singularities of the Riemann functions of mixed initial boundary value
problems with a plane interface in a quarter space for the wave equa-
tion. This problem was suggested by Wilcox [12].

2. Formulation of the problem and Lopatinski’s determinant.
R" denotes the n-dimensional Euclidean space and £* denotes its real
dual space with duality <z, &>=w,&+ - - - +2.&,. Let us write 2'=(x,,
ey By, X' =(2,, + - -, 2,) Tor the coordinate x=(x,, - - -, x,) in R™ and
=&, -, &), §'=(&, -+, &) for the dual coordinate &§=(§,, - - -, &5)
in 8*. 2, will play the role of time variable and «”” will play the role
of physical space variable. Let h be a given positive number, and set
Q,={x"eR";0<x,<h} and 2;,;={x"eR""';x,>h}. We consider
two wave operators P,(D)=a’d—D? and P,D)=aid—D; with wave
speeds a,>0 and a,>0 which govern the wave propagation in £; and
Q;1, respectively. Here D;=4d/iox; and 4=D;+---+D;,. The mixed
problem we will study is
(1) PDwx)=[f(x),2,>0,0<x,<h (i.e. in R, X 2)p),

(2) P,Dwuwx)=rf(x),2,>0,2,>h (i.e. in R, X 2;1),
(3) w0, 2")=g,x"), (Du)0, )= g,(x") (initial conditions),
(4) QD)UY | zymo=kyx), 2,0 (boundary condition)
(5) B (DY) |3, n- = Cy(DYUR) |0, o + E5(&), 2,20, j=1,2

(interface or transmission conditions),
where Q(D), B,(D) and C,D) are partial differential operators with
constant coefficients.

Let I', denote the cone {ye 8"; 5 >0,7i>al|y” [} and let us denote
by 4} =2} (¢’ +1iy)) and 27 =2; (&' +in’) the roots with positive and negative



290 M. MATSUMURA [Vol. 52,

imaginary part, respectively, of the equation in 1: P(¢’+14y"; )=0 for
g +iy e Br'—il, (1=1,2) where I',={y/ ¢ B~*; (¥, 0) e I',}. Now we set

' an— e+ | Bidr)  Ci(A)

Ry +$77) QA Bi) Cya
B,\(4f) Ci(4)
By(4f) Cy4)
and define the Lopatinski’s determinant of the system {P,(D), P,(D),
Q(D), B;D), CyD), j=1, 2} for the mixed problem (1)—(5) by
) R(& + i) =Ry(&' + i) exp {iha; (&' + 7))
— R,(& + i) exp {ihaF (&' +in)}.
Here Q)= Q' + iy, 25 + 7)), B,(4) = By(& + iy, 22’ +iy)) and
C,2H=C (& +1iy, 25 (&' +17)). Note that Q(2}) is the Lopatinski’s de-
terminant of the system {P,(D), Q(D)} for the mixed problem in the
quarter space {x € R"; , >0, , >0} and glglg glgig (exp {th(A7 + 23}
2\ 1 2\/2

is that of the system {P,(D), P,(D), B,(D), C;(D), j=1, 2} for the trans-
mission problem in the space {x ¢ R", x,>0} with the plane interface
Z,=h (see Hersh [3]).

Theorem. The mixzed problem (1)—(5) is C= (or &) well posed if

and only if the following conditions® are satisfied.

(8) Ry(9)+#0, 9=(1,0---,0),

(9) R(&—ird)=Ro(&—1p, & -+, §)#0 forany & e B* and 27,
where R} is the principal part of R, (See Sakamoto [7]).

Making use of the Tarski-Seidenberg theorem, we can deduce from
(9) that the following inequality holds for some constants M, and M,.
(10) |Ry(& — i) | =M, +|&|+]rD":, &eB, r>n.

Since we have |R,(&'—iy9)|< M,(1+|&'|+ |y DY+ and |exp {20k (§'—1r9)}|
<exp {—2hy/a,}, there exists a constant § such that

g eBm, T=T0
if we take y=mlog (2+]&’). Here m is a positive real large enough.
Hence we have
R —ird)
12) =Ry — iy ¥)A—[R,(& —iy¥) exp {2tha (§' — iy )} Ry(&" —irI)])
*0, &elBr Y, r=mlog 2+|&).

3. The Riemann function for the mixed problem. The solution
of the mixed problem (1)—(5) can be represented in terms of the Riemann
function and the Poisson kernels. In this note we will construct and
study only the Riemann function, since the Poisson kernels can be con-
structed and studied in a similar way. Let y be an arbitrarily fixed

b

(6)
R,\(&'+i)=Q;)

1) The author was suggested these conditions by Dr. N. Iwasaki.
2) Note that 7 (& +in)=—2{(§'+1i7).
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point (0,y”), ¥y’ e 2,, c=I or II. The Riemann function for the mixed
problem (1)—(5) is defined as the unique distribution solution G(x, ) of
the mixed problem (1)-(5) with f=0, ¢,=0, g,(x")=d6(x"—y") and k,
=k,=k,=0, where d(x) is the Dirac distribution. The Riemann func-
tion of the forward Cauchy problem for P,(D) in the whole physical
space R*! ig defined as the inverse Fourier-Laplace transform of
P (&+1ip~* in the sense of distributions:

(13) B(@)=@0™ [ P@+in™ exp {ice, &+in)ds

where 5 € —s9—1I", with a positive real s large enough. Then the dis-
tribution E (x—v) describles the incident or primary propagation of
waves due to a point source d(x” —y""). We define the secondary Riemann
function F(x,y)=F,/(x,y) in £, in the following way. Case 0<y,
<h:G@x,=E,(x—y)—F(x,y) for 0<x,<h and G(z,y)=F,(x,y) for
2, >h. Casey,>h: G, y)=F(x,y) for 0<x,<hand G(x, y) =E(x—y)
—F,(x,y) for x,>h. F(x,y) describes the propagation of secondary
waves caused by the primary waves, the boundary wall #,=0 and the
interface wall z,=h. Thus the F, and F, are given as the solutions of
the following equations. Case 0<y,<h: P,(D)F (x,y)=0 for x,>0,
2" e 2(=1,2), QDIF (2, V) |5,-0= QD IE (£ —Y) 2,05
B (D )E\(@—y)—F (@ Y)) |oper-=C{(DIF AL, W|s,-n+ (G=1,2).
Case y,>h: P(D)F (x,y)=0 for z,>0 and 2" ¢ 2, (:=1, 2),
Q(Dx)Fl(x’ y)lx,,=o=0’
B (D )F (%, Ylo,-n-=Ci(D)ELx—Y) —Fo(, Y)|op-r+ (7=1,2).

Taking thus formally partial Fourier-Laplace transforms with re-
spect to ’=(x,, - -+, %,_,) in these equations, we obtain a system of
ordinary differential equations in x, with coefficients depending on the
parameter & +4y’. From (12) we can find uniquely the solutions F&
— Y, @, ), ¢=1,2 of the form: F,=a exp {ix,2i}+Db exp {iz, 17}, F,
=c exp {ix 47} if we take y=mlog (2+|&’]). Let S, be the surface
(=& —n, & -+, &), €8, pi=m]log (2+]&') in C*. Then F\(2,v)
and F,(z,y) can be obtained by applying the inverse Fourier-Laplace
transformation along S,, to the solutions F, and F,. We shall give the
more explicit expressions in the following note.
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