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91. The Existence and Uniqueness of the Solution of
Equations Describing Compressible Viscous
Fluid Flow in a Domain

By Atusi TANI
Tokyo Institute of Technology

(Communicated by Kosaku YO0SIipA, M. J. A., Sept. 13, 1976)

1. Introduction. The compressible viscous isotropic Newtonian
fluid motion is described as follows: (the summation convention is used)
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(o, density ; v, velocity ; p, coefficient of viscosity; y/, second coefficient
of viscosity; x, coefficient of heat conduction; p, pressure; f, outer
force; S, entropy; 6, absolute temperature; D/Dt=3/dt+v,-9/dx,).

By the physical requirements, g, ¢/, k, p and S are considered to be
functions of p and ¢ such that

(1.4) #’+—§-ﬂ20; 1 5,0, 850,

If S is smooth, then it follows from (1.1) and (1.3) that
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We shall consider a first initial-boundary value problem of (1.1),
(1.2) and (1.3") with the initial-boundary conditions:
(1.5) {v(x, 0)=v,(x), O(z, 0)=0,(2), p(x, 0)=p,(x) (x € ),
’U(x, t)=0» 0(%, t)=01(x, t) ((.’/U, t) € Z_'T),

(2 is a bounded or unbounded domain in R?, whose boundary I” belongs
to C?*= and satisfies Liyapunov conditions (cf. [4]); I'r=1"x[0,T1). We
assume that the compatibility conditions hold and that in (1.5)

Vo 0y € HZ*“(_Q), O € HH“(Q); O<po§Po§ﬁo< + oo,
(106) 0<90§00§50< + oo, 01 € H“a(FT)y 122 ﬂ,’ K, D, Se Of;cL(@p.a),

S e B*L(Qyp),
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[v]f’ =sup |v|;
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[0 =l + o[k
when a=1, notations such as |v|%} are used; Ou:%(D,,,)={a(p,0)|q is
defined on 9, ,, n-times partially differentiable and its n-th order de-

[v|SF=sup

rivatives are locally Lipschitz-continuous there}).

Firstly we consider a characteristic curve %(z; «,t) of (1.1) pass-
ing (%, t) and put z,(x, )=27(0; z,t). If v ¢ H**(Q) with v|;,=0, then
the correspondence (, t)— (,(x, t), t,=t) is 1-to-1 from @, onto @, and
the notation (x(x,,t,),t=t,) is used for the inverse transformation.

Thus we have x=xo+‘r (x,, T)dz, Where D(xy, to) =v(x(2y, t,), t=1,), and
0
we use these notations for other functions without explicit statements

9w >_1 by (9:,), accord-

0
ing to (1.1) we have ((z, t) is used in place of (x,, t,) for simplicity)
t
A @, t; 0)=po@)- exp[—- j " 94D 0@, c)df] (D,=0/31,).

(It is noted that the initial-boundary conditions for #(x, t) etec. are the
same as those for v(z, t) etc.) Extending 6, € H***(I"y) to 6} ¢ H**(Qy)
and setting w,(z, t) =0,(x, t) —v,(®) ((=1,2,3), w,(r, )=0(xz, t)—0¥(, t)
+6¥(x, 0) —6,(x), from (1.2), (1.3"), (1.4) and the above arguments we
derive

D,w =%, t, w)Diw+ SB(x, ¢, w, Dyw, f ' Drw df),
(1.8) 0

w(x, 0)=0, W|pp=0.
Secondly we make the following linear problem correspond with
(1.8):

(1.9) {th—w’ t, w) Dy + %(x, t, w, D,w, j Diwdz),

w(x, 0)=0, W|rp=0,

from now on. Denoting the inverse matrix (
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where %, B € H4(Q,) and
weB,= {w & H(Qp)| wp,=0, <wdpo= S |DiDiw|y
0

2r+sl=

+ 3 |Dzw1§%2><Ml} VM, € (0, 8y).

Isi=1

Then there exists T, e (0, T] such that the system (1.9) is uniformly
parabolic in Petrowsky’s sense in Qr,.

2.1. The Green matrix and its estimates. First of all we con-
gider the problem :
@.1) {DtW=2I(w, tL,wD:W  in Q, ,=02X(c, T,

' Wiiee=0, Wir,=Zlr., rp=Ixlz, TN,

where Z is a fundamental solution for the extended system of (1.9) in
R®. By a local coordinate {z}, (2.1) is transformed into a system of
the same type in a half space R ={%,>0}. After lengthy calculations,
we can check that Lopatinsky’s condition for the transformed system
is satisfied. Hence the solution G, of (2.1) can be constructed and then
the Green matrix G is defined by G=Z —G,, which is evaluated as fol-
lows, e.g.,
2.2) |D/D;G(x,t;§&,7; w)l

SO (t—7)~ @+ +IsD2, exp [__ dl]az;t—_sﬁ] 2r+1s|=2).
-7

2.2. Estimates of the bounded solution of a linear problem.
2.3) e, t)=f dfj G, t; 8, 7; w)szs(s, e, w, Daw, I D“;wdro)d&
0 2 0

is obviously a solution of (1.9) and we have, e.g., for |s|=1,2
(2.4) | Dsiv(w, t) — D (w, t)| < CEP(E—1)~ @102 |B|§)
(-1 =] - |+ - 1#).  C{*P are positive functions continuous in <wd>$*, T,
and initial data and monotonically increasing in each argument. From
the estimate of ||B||& it follows that there exist T, € (0, T,] and M,(>0)
such that
(2.5) |IDiw |5 <M, or, We@p={weCy,||Diwl)<M,}.

3. The existence and uniqueness of a bounded solution of (1.8).
Let us define a sequence {w,} such that wy(x,t)=0 (e &}) and w,(x,t)
be a solution of (1.9) with w=w,,_, € ©%. Then the above arguments im-
ply w, € €}. According to the estimates of ||U(x, t, w,_,) —A(x, t, w,_,) ||
and ||B(x, t, w,_)—B(x,t,w,_,)|$ and the estimates in the previous
section we have, on the basis of the expression that w,—w,_, satisfies,
B.1) (wp—w, )F SCAT, (W )7 + (W )PV Wy — Wi )T
K Pgo=>¢+ D% |¥). Since C; | 0 as T | 0, we can take 7" ¢ (0, T']
such that C,(7,2M,+2M,)<1. Thus w, uniformly converges to w
e H**(Q;.) as n—oo. From (1.7) it follows that p(x,t; w,+v,) con-
verges to p(x, t; w+v,) € B**(Q,). The proof of uniqueness is given
by the same estimate as (8.1). Now we have
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Theorem 1. For some T’ e (0,T] 3(w,p) € H**(Qr)XB*“(Qr.)
such that (w, p) satisfis (1.8).

Theorem 2, For some T’ ¢ (0, T1, 3:(v, 6, p) € H**(Qr) X H***(Qr.)
X B**(Qy.) such that (v, 0, p) satisfies (1.1), (1.2), (1.3") and (1.5).
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