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The Existence and Uniqueness of the Solution
Equations Describing Compressible Viscous

Fluid Flow in a Domain

By Atusi TANI
Tokyo. Institute of Technology

(Communicated by KSsaku YOSIDA, M.Z.A., Sept. 13, 1976)

1. Introduction. The compressible viscous isotropic Newtonian
fluid motion is described as follows: (the summation convention is used)

(1.1) Dp 3v
Dt x

Dv 1 [ 3v\ 1 3 [ (3vDt-=- xi klu-)+- g +
(1.2) 1 ap + f, (i= 1, 2, 3),

p x
)(1.3) DS 1 a ( + _( v +. a.V. +Dt pO x k x 2pO k x x x

(#, density; v, velocity; #, coefficient of viscosity; #’, second coefficient
o viscosity; , coefficient o heat conduction; p, pressure; f, outer
force S, entropy , absolute temperature D/Dt=3/3t+ v.3/x).

By the physical requirements, , #’, , p and S are considered to be
functions o p and such that

#0 #, , p,(1.4) p’+ S>0.

If S is smooth, then it follows from (1.1) and (1.3) that. +Dt ptS x x 2pS x x(.3’) ( 3v )+ pS, 3v+ pSS / S x
We shall consider a first initial-boundary value problem of (1.1),

(1.2) and (1.3’) with the initial-boundary conditions:

v(x, 0)=v0(x), o(x, 0)=o0(x), p(x, 0) =p0(x) (x e 9),(.5)
Lv(x, t)=o, (x, t)=(x, t) fix, t) e F),

(2 is a bounded or unbounded domain in R, whose boundary/’ belongs
to C+" and satisfies Lyapunov conditions (cf. [4]) Fr=F [0, T]). We
assume that the compatibility conditions hold and that in (1.5)

(Vo, to e H2+"(9), po e H1+"(9), 0<p0_p0=<0< + oo,
(1.6)

I,f e Bz’(T),
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e x )};(0, ) (0,

)r----- X [0, T];

r+sl=O r+sl=n

H+(Q)= v(x, t)l IlvllP+) ID;DvI?
2r+ Isl =0

+ [DDv ("/2), + ]DDv("), +
2r+ ls[ (n-1)vO 2r+ Isl

Iv ("/) v(x t)- v(x. t’)l
t,T sup

It--t’l"/

Iv(" v(x. t)-v(x’, t)x,Tsup
lx-x’l"

I(a/2)Iv")llv.... +lv..
(L) n+when a=l, notations such as Iv =, are used; Oo(,,)={q(p,O)lq is

defined on ,,, n-times partially differentiable and its n-th order de-

rivatives are locally Lipschitz-continuous there}).
Firstly we consider a characteristic curve (; x, t) of (1.1) pass-

ing (x, t) and put Xo(X, t)=(0; x, t). If v e H+"(Qr) with vlr.=0, then
the correspondence (x, t)(Xo(X, t), t0=t) is 1-to-1 from Qr onto Qr and
the notation (X(Xo, to),t=to) is used or the inverse transformation.

Thus we have x=x0+[: 9(x0, r)dr, where O(x0, to)=v(x(xo, to), t=t0), and

we use these notations for other functions without explicit statements

from now on. Denoin he inverse matrix , by (), accord-

ing o (1.1) we have ((, t) is used in laee o (,, t0) for simlieiy)

(I is noed ha he initial-boundary conditions or (, t) ee. are
same as hose for (, t) ee.) Nxgending 0 e H*(F) o 0 e
and seting (, t)=(, t)--() (i=1, , g), (, t)=0(, t)--0(, t)
+0(, 0)--0,(), from (1.2), (1.8’), (1.4) and he above arguments
derive

kw(x, 0)=0, wlr=0.
Secondly we make the ollowing linear problem correspond with

(.S)

(1.9) Dt=(x’ t’ w)D+(x’ t’ w’Dw’ I: Dwdv)’
(x, 0) 0, ]r= 0,
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where 9, !8 e H"(Qr) and

w e (R)T-- W e H+"(T)I WI----0, (W}’")=__ ID;DwI
2r+ is] =0

tT
sl = )

Then there exists T e (0, T] such that the system (1.9) is uniformly
parabolic in Petrowsky’s sense in QTy.

2.1. The Green matrix and its estimates. First o all we con-
sider the problem"

DW=(x, t, w)DW in Q,r= (r, T],
(2.)

tW=.=0, W[..=Z.. (.,=[r,T]),
where Z is a fundamental solution for the extended system o (1.9) in
R. By a local coordinate (}, (2.1) is transformed into a system of
the same type in a half space R (0}. After lengthy calculations,
we can check that Lopatinsky’s condition for the transformed system
is satisfied. Hence the solution G0 of (2.1) can be constructed and then
the Green matrix G is defined by G=Z-Go, which is evaluated as fol-
lows, e.g.,
(2.2) [DIDG(x, t #, r w)]

Z.Z. Estimates of the bounded solution of a linear problem.

is obviously a solution of (1.9) and we have, e.g., for
(.) ID(, t)--D#(, t’)lNC"(t--t’)
(1" I =1" I +1" I) C" are osiive unetions continuous in
and initial data and monotonically increasing in each argument. Prom
he estimate of I1 i follows ha here exis T e (0, T] and M(>0)
such ha
(2.5) D[M, or, e ,{w er [DwIM}.. The existence and uniqueness o a bounded solution of (1.8).
Let us define a sequence {Wn) such that Wo(X, t)=O ( e) and w,(x, t)
be a solution o(1.9) with W=Wn_ e. Then the above arguments im-
ply Wn e . According to the estimates of
and ]](x, t, w,_)--(x, t, Wn_) ") and the estimates in the previous
section we have, on the basis of the expression that w,--w.,_ satisfies,
(3.) ({w.-w._))7,") gC(T, ((Wn_))?’") + ((w._)}7’"))((w._-w._))7
(((.}}7’")=(.}7’")+D. ]")). Since C 0 as T 0, we can take T’ e (0, T]
such that C(T,2M+2M)<I. Thus w, uniformly converges to w
e H+"(Qr,) as n. From (1.7) it ollows that p(x, t; w,+Vo) con-
verges to p(x, t w+ v0) e B+"(Qr,). The proof of uniqueness is given
by the same estimate as (3.1). Now we have
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Theorem 1. For some T’ e (0, T] l(w, p) e H+"(Qr.) BI+"(Qr,)
such that (w, p) satisfis (1.8).

Theorem 2. For some T’ e (0, T], ,(v, , p) e H+(Qr,) H+(Qr,)
BI+"(Qr,) such that (v, O, p) satisfies (1.1), (1.2), (1.3’) and (1.5).
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