# 116. A Note on Quasi Metric Spaces

By Ivan L. REILLY
University of Auckland, Auckland, New Zealand
(Communicated by Kenjiro SHODA, M. J. A., Oct. 12, 1976)

## 1. Introduction and notations.

The purpose of this note is to point out errors in a proof and a theorem of Kim [3], and to give a corrected version of the theorem. By a quasi-metric on a set X we mean a non-negative real valued function p on  $X \times X$  such that for  $x, y, z \in X$  we have p(x, y) = 0 if and only if x = y and  $p(x, y) \le p(x, z) + p(z, y)$ . The set  $B(x, p, \varepsilon) = \{y \in X : p(x, y) < \varepsilon\}$  is the p-ball centre x and radius  $\varepsilon$ . The topology induced on x by x has the family x and x are a base. If x is a quasi-metric on x, its conjugate quasi-metric x on x is given by x by x for x and x by x bit of x and x by x be x by x by

## 2. A theorem and an example.

The following result is hinted at by Stoltenberg [6], and proved explicitly in [4].

Theorem 1. Any quasi metric space whose conjugate quasi metric topology is compact is metrizable.

**Proof.** Let  $T_1$  be the topology induced on the set X by the quasi metric p whose conjugate q induces the compact topology  $T_2$  on X. Let U be  $T_2$  open, and  $y \in U$ . Since  $(X, T_1, T_2)$  is pairwise Hausdorff [2], for each  $x \in X - U$  there is a  $T_2$  open set  $U_x$  and a  $T_1$  open set  $V_x$  such that  $x \in U_x$ ,  $y \in V_x$  and  $U_x \cap V_x = \phi$ . Hence  $\{U_x : x \in X - U\}$  is a  $T_2$  open cover of X - U which is  $T_2$  compact, and so there is a finite subcover

$$U_{x_1}, \dots, U_{x_n}$$
. Let  $V = \cap \{V_{x_i} : i=1, \dots, n\}$ 

It is now easy to prove that either of the metrics  $d_1$  and  $d_2$ , given by

$$d_1(x, y) = \frac{1}{2} \{p(x, y) + q(x, y)\}$$
 and

 $d_2\!(x,y)\!=\!\max\left\{p(x,y),\;q(x,y)\right\}\qquad\text{for }x,y\in X,$  induces the topology  $T_1$ , so that  $(X,T_1)$  is metrizable.

The question now arises as to whether the compactness condition of Theorem 1 can be relaxed.

Example 1. This is a modification of an example due to Balanzat [1]. Let X be the set of positive integers and define the non negative real valued function g on  $X \times X$  by

$$q(n,m) = \begin{cases} \frac{1}{m} & \text{if } n < m \\ 0 & \text{if } n = m \\ 1 & \text{if } n > m. \end{cases}$$

Then q(n,m)=0 iff n=m, and the following discussion of cases shows that q satisfies the triangle inequality.

Let  $n, m, r \in X$ , then (i) if n < m < r, q(n, m) = 1/mwhile q(n, r) + q(r, m) = 1/r + 1.

(ii) if 
$$n < r < m$$
,  $q(n, m) = 1/m$ 

while q(n, r) + q(r, m) = 1/r + 1/m.

(iii) if 
$$m < r < n$$
,  $q(n, m) = 1$ 

while q(n, r) + q(r, m) = 1 + 1.

(iv) if 
$$m < n < r$$
,  $q(n, m) = 1$   
 $m > 1/r + 1$ .  
(v) if  $r < m < n$ ,  $q(n, m) = 1$ 

while q(n, r) + q(r, m) = 1/r + 1.

$$(v) \text{ if } r \le m \le n, \ q(n, m) = 1$$

while q(n, r) + q(r, m) = 1 + 1/m.

(vi) if 
$$r < n < m$$
,  $q(n, m) = 1/m$ 

while q(n, r) + q(r, m) = 1 + 1/m. Thus q is a quasi metric on X, with conjugate p given by

$$p(n,m) = q(m,n) = \begin{cases} 1 & \text{if } n < m \\ 0 & \text{if } n = m \\ \frac{1}{n} & \text{if } n > m. \end{cases}$$

Let  $(X, T_1, T_2)$  be the bitopological space induced by p and q. Then  $(X, T_2)$  is not metrizable because it is not Hausdorff. For let  $m, n \in X$ ,  $\varepsilon, \delta > 0$  and  $U = B(m, q, \varepsilon)$  and  $V = B(n, q, \delta)$ . There is an  $r \in X$  such that  $r > \max \left\{ m, n, \frac{1}{\varepsilon}, \frac{1}{\delta} \right\}$ . Then  $q(m,r) = 1/r < \varepsilon$  and  $q(n,r) = 1/r < \delta$ , so

that  $r \in U \cap V$ . Hence, there is no pair of disjoint  $T_2$  open sets one containing m and the other containing n. Now  $(X, T_2)$  is second countable and  $T_1$  so that compactness is equivalent to the Bolzano-Weierstrass property. Let F be any infinite set in X,  $n \in F$ , and  $\varepsilon > 0$ . Take  $m \in X$ such that  $m > \max \left\{ n, \frac{1}{s} \right\}$ . Since F is infinite there is a  $k \in F$  such

that k > m, and thus  $q(n, k) = \frac{1}{k} < \frac{1}{m} < \varepsilon$ , so that  $k \in B(n, q, \varepsilon)$ . Hence

n is a limit point of F, and  $(X, T_2)$  is compact. Thus Theorem 1 implies that  $(X, T_1)$  is metrizable. Indeed,  $B(n, p, 1/n) = \{n\}$  for each n  $\in X$ , so that  $(X, T_1)$  is discrete. Then  $(X, T_2)$  is a quasi metric space which is not metrizable even though its conjugate topology  $(X, T_1)$  is countable and discrete, and hence has the following properties: all the separation properties, Lindelof, second countable, separable, paracompact, locally compact,  $\sigma$ -compact, metacompact, countably paracompact, and is a K-space. Thus no combination of these properties can replace the compactness of Theorem 1.

#### 3. On a paper by Kim.

Kim [3] claims to give a bitopological proof of a theorem of Sion and Zelmer [5]. The following example shows his mistake.

Example 2. Let X=[0,1] and define the real valued function p on  $X\times X$  by

$$p(x,y) = \begin{cases} x - y & x \ge y \\ \frac{1}{2}(y - x) & x \le y. \end{cases}$$

Then p is a quasi metric on X. Now  $B(x, p, \varepsilon) = (x - \varepsilon, x + 2\varepsilon)$  for suitable  $x \in X$  and  $\varepsilon > 0$ . Thus p induces the usual topology  $T_1$  on [0, 1]. Hence  $(X, T_1)$  is a regular, compact quasi-pseudo-metric space, and p has conjugate q given by

$$q(x,y) = \begin{cases} y-x & x \le y \\ \frac{1}{2}(x-y) & x \ge y. \end{cases}$$

So  $B(x, q, \varepsilon) = (x - 2\varepsilon, x + \varepsilon)$  and q induces the usual topology  $T_2$  on [0, 1], so that  $T_1 \subset T_2$ . If  $d(x, y) = \max\{p(x, y), q(x, y)\}$  then  $d(x, y) = |x - y| \neq q(x, y)$  as Kim claims. What can be said is that d induces the same topology as q. In general, nothing can be said about the metrizability of (X, p).

As a corollary to this proof Kim claims the theorem "Any compact quasi metric space is metrizable." The space  $(X, T_2)$  of Example 1 shows that he is mistaken. Theorem 1 is a correct version of this result.

#### References

- [1] M. Balanzat: Sobre la metrización de los espacios causi métricos. Gaz. Mat. Lisboa, 12 no. 50, 91-94 (1951).
- [2] J. C. Kelly: Bitopological spaces. Proc. London Math. Soc., 13, 71-89 (1963).
- [3] Y. W. Kim: Pseudo quasi metric spaces. Proc. Japan Acad., 44, 1009– 1012 (1968).
- [4] I. L. Reilly: Quasi-gauges, quasi-uniformities and bitopological spaces. Ph. D. thesis, University of Illinois, Urbana (1970).
- [5] M. Sion and G. Zelmer: On quasi-metrizability. Canadian Jour. Math., 19, 1243-1249 (1967).
- [6] R. Stoltenberg: On quasi metric spaces. Duke Math. Jour., 36, (1969).