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115. A Note on the Classification of Stability

By Sadahisa SAKATA
Osaka University

(Communicated by Kenjiro SHOD/k, M. J.A., Oct. 12, 1976)

1. Introduction. We shall consider the system of ordinary dif-
ferential equations -f(t, x). Let R denote Euclidean space of dimen-
sion n. We shall assume that f is continuous on [0, c)R and
satisfies the equality f(t, 0)--0 for t_>_0. In this note we discuss various
types of stability, that is, (simple) stability (abbreviated by S), uniform
stability (US), quasi-asymptotic stability (in the large) (QAS(L)), stability
(in the large) (AS(L)), quasi-equi-asymptotic stability (in the large)
(QEAS(L)), equi-asymptotic stability (in the large) (EAS(L)), quasi-
uniform-asymptotic stability (in the large) (QUAS(L)), uniform-asymp-
totic stability (in the large) (UAS(L)), and exponential-asymptotic
stability (in the large) (Exp AS(L)) introduced by Lyapunov, Massera
and many others. For the definitions of the above notions we shall
employ those in Yoshizawa [4].

Our purpose is to clarify the relations between these notions. This
note is based on a portion of a dissertation of the author’s Master
degree in 1975 submitted to Osaka University.

We now define F(S) as the family of continuous functions f for
which the trivial solutions x(t)--O of c--f(t, x) are stable. Of course,
in a way similar to the above notation we also define F(US), F(QAS),
.., F(Exp ASL) respectively. It is convenient to define

FL(.) (f e F(.)[ f(t, x) A(t)x},
rAut(*)’--(f e F(.)]f is independent of t)

and Fe(.)-- (f e F(.)lf(t-t-w, x)-- f(t, x) for some
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2. Well.known Relations. First we begin to give the proposi-

tions, immediate consequences of the definitions.
Proposition 1. F(US)cF(S).
Proposition 2. (i) F(QUAS)F(QEAS)F(QAS),
(ii) F(Exp AS)F(UAS)cF(EAS)cF(AS).
Proposition 3. (i) F(QUASL)F(QEASL)cF(QASL),
(ii) F(Exp ASL)cF(UASL)F(EASL)cF(ASL).
Proposition 4. (i) F(Exp ASL)cF(Exp AS),
(ii) F(QUASL)F(QUAS) hence F(UASL)F(UAS),
(iii) F(QEASL) F(QEAS) hence F(EASL) F(EAS),



No. 8] Classifica.tion of Stability 425

(iv) F(QASL) F(QAS) hence F(ASL) F(AS).
Next we give the following relations which show that for certain

important classes of systems of differential equations, some concepts
are equivalent.

Theorem 1. For the class of linear systems,
( i ) Fz(EASL)--F(ASL)=Fz(EAS)--Fz(AS)

FLn(QEASL) F.n(QASL) F,.(QEAS) F,.(QAS)
(ii) F,.(QUASL)--F,.(QUAS),
(iii) Fz(Exp ASL)--Fz(UASL)=FL(Exp AS)--Fzt(USA).
Theorem 2. For the class of periodic systems,
( i ) Fe(US)--F(S),
(ii) Fe(UAS)--F(EAS)---F(AS),
(iii) Fe(UASL)--Fe(EASL)=Fe(ASL).
Theorem :. For the class of autonomous systems,
(i) Ft(US)--Ft(S),
(ii) Ft(UAS) Ft(EAS) Ft(AS),
(iii) Ft(UASL)--Ft(EASL)-----Ft(ASL).
These theorems are well-known. See Yoshizawa [4].. Examples. Each of types of asymptotic stability in the large

is the property concerning the behaviors of solutions in the whole space
[0, oo)R, while each of types of asymptotic stability is that only in
some neighborhood of the trivial solution. This shows, in general, that
each of types of asymptotic stability does not imply any type of asymp-
totic stability in the large. The following examples illustrate that
arbitrary two types of stability are actually different concepts. We
mean that x, x, x2 and y in the following examples are real numbers.

Example 1. Ft(UASL) g Ft(Exp AS), hence F(UASL)
F(Exp AS). Consider the equation 2=f(x), f(x)-= x3. Then

x0 is the solution of this equation through (to, x0).x(t to, Xo)-
J(t- to) +

Therefore we can see that f e Ft(UASL), but f Ft(Exp AS).
Example 2. Fz(EASL)gF.(UAS), hence F(EASL)gF(UAS).

Consider the equation 2=f(t, x), f(t, x)=-1.x. For
t+l

x(t" to, Xo) to+lxo satisfies that x(2m-- 1" m-- 1 x0)=x00 asm
t+l

oo, hence f e Fs(QUAS). On the other hand we can see that f
Fs{(EASL) F.{(US).

lgxample :. Fs(EASL) gF,.(US). Consider the equation, given
by Massera [2], 2--f(t, x) where

f(t, x)= --{13 + 12 sin log (t + 1) + 12t(t + 1)- cos log (t + 1)}. x.
It is easily verified thatf e FLn(EASL), butf Fs,(QUAS) U FL(US).



426 S. SAKATA [Vol. 52,

Example 4. F(ASL) F(EAS). Consider the system of equations

5-- (/3t)g(t’ y) y(3/3y)g(t, y) x, it-- Y where
g(t, y)

g(t, y)-- sin’ (ye9 + 1 1.
sin (ye) + {1--t sin (ye*)} 1 + sin (ye) 1 + t

Refer to Massera [1]. We can easily show that the trivial solution
x(t)--O, y(t)--0 is asymptotically stable in the large, but is not equi-
asymptotically stable.

Example 5. Fz,(QUASL)
F.,(UAS). Consider the equation, given by Massera [2], 2=f(t, x),
.f(t, x) (6t sin t--2t)x. Then we have that f e F,n(QUASL), but
f e F(US).

Remark. We can easily see that the trivial solution is (simple)
stable, if it is unique to the right on [0, c) and quasi-equi-asymptotically
stable. For example, if we assume that f satisfies locally a Lipschitz
condition with respect to x, then for the system o equations $----f(t, x),
quasi-equi-asymptotic stability implies (simple) stability, hence it implies
equi-asymptotic stability.

Example 6. F(QASL)Ft(QEAS) [.J Ft(S), hence F(QASL)

F(QEAS) (2 F(S). Consider the system of equation d(x--f x.)
dt \!

where f(x, x) \x(x.--2x) Refer to Vinograd’s example in Hahn

[5], 191194. An elementary calculation verifies that f e F,(QASL),
but f e Ft(QEAS) U F,(S).

Example 7. F,(UAS) F,(Exp AS), hence F(UAS)
F(ExpAS). Consider the equation $=f(x), f(x)--x--2x. Then,
for 0 x 1 we have $ x and for 1 x 0 we have $ x, while
we have --3x or 1 x 0. A comparison theorem shows that
f e Ft(UAS), but f e F,(Exp AS).

Example 8. F(EAS)TF(UAS). Consider the equation 5--f(t, x),

f(t, x)=(x x). Then x(t" to, Xo)= Xo(to + 1) is the
t +

solution of this equation through (to, x0). It is obvious thatf e F(EAS).
However, for 0 x0 1 it follows that

x(2m-- 1" m-- 1, x0) x0 -/0 as m-c.
2--x0

Thus f F(QUAS), hence f F(UAS).
Example 9. F(AS) F(EAS). Consider the system of equations

2 (/3t)g(t, y) + y(y-- 1)(/3y)g(t, y). x, --y(y-- 1)
g(t, y)

where
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g(t, y)-- sin (yet) + 1 1.
sin (yet) + {1- t sin (yet)} 1 / sin (yet) 1 + 2

It is easily shown that the trivial solution is asymptotically stable, but
is not equi-asymptotically stable.

Example 10. FLn(US)Fr.n(AS), hence F(US)TF(AS). Con-
sider the equation c--f(, x), f($, x)=x cos . For t=>t0, the solution
x($" to, x0) x0 exp [sin t- sin to] satisfies the inequalities Xole-<=Ix(t" to, Xo)l<-_lXo]e2. Hence f e FLn(US), but f F(AS).

Example 11. Faut(US)F.ut(AS). Consider the equation c----f(x),

sin--1 x0f(x)-- x’ It is obvious that each of the solutions x(t)----O,
0 ,x--0

1x(t)---- (k" nonzero integer) is unique to the right on [0, o0). There-

fore, we can see that f e Ft(US), but f e FAut(AS).
Example 12o Fn(S)Fr.n(US), hence F(S)TF(US). Consider

the equation 2=f(t,x), f(t, x) (t sin t--1)x. Then we obtain the
solution

x(t" to, Xo) Xo exp [-- t-- t cos t + sin t + to + to cos t0-- sin to].
It is clearly valid that f e F(S). However f e Fn(US), because for
x00, it follows that

x((2m + 1)=" 2mu, x0)l----Ix0] e-*c as m-.c.
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