148. On a Theorem of Ph. Bénilan Concerning Semigroups Systems

By Akira MARUYAMA

Department of Mathematics, Gakushuin University (Communicated by Kôsaku Yosida, M. J. A., Dec. 13, 1976)

Let X be a real Banach space. By the duality map of X into X^* , the dual space of X, we mean the multivalued mapping F of X into X^* defined by $Fx = \{f \in X^* : \langle x, f \rangle = \|x\|^2 = \|f\|^2\}$. The tangent functional $\tau(x, y)$ on $X \times X$ is defined by $\tau(x, y) = \lim_{t \downarrow 0} t^{-1}(\|x + ty\| - \|x\|)$ for $x, y \in X$, and it is known that $\tau(x, y)$ satisfies the following conditions: (a) $\tau(x, y) \leq \|y\|$, (b) $\tau(x, y_1 + y_2) \leq \tau(x, y_1) + \tau(x, y_2)$, (c) $\tau(x, ay) = a \cdot \tau(x, y)$ for $a \geq 0$, (d) $-\tau(x, -y) \leq \tau(x, y)$, (e) $\tau(x, ax) = a \|x\|$ for real a, (f) $\|x\| \cdot \tau(x, y)$

- $=\sup_{f\in F_X}\langle y,f\rangle$. By a semigroups system on a closed set $D\subseteq X$, we mean a family $\{S_y(t):t\geq 0,y\in X\}$ of operators from D into itself satisfying
- (1) $S_y(0) = I$ (the identity), $S_y(t+s) = S_y(t)S_y(s)$,
- (2) $\lim_{t\downarrow 0} S_y(t)x = x \text{ for } x\in D$,
- (3) $||S_{y_1}(t)x_1 S_{y_2}(t)x_2|| \le ||S_{y_1}(s)x_1 S_{y_2}(s)x_2|| + \int_s^t \tau(S_{y_1}(\sigma)x_1 S_{y_2}(\sigma)x_2, y_1 y_2)d\sigma \text{ for } t \ge s \ge 0 \text{ and } x_1, x_2 \in D \text{ with } y_1, y_2 \in X.$

A multivalued operator A defined on $D(A) \subseteq X$ with values in X is called *accretive* if $\tau(x_1-x_2,y_1-y_2) \ge 0$ for $y_i \in Ax_i$ (i=1,2), and an accretive operator A is called *m-accretive* if the range $R(I+A) = \{x+y; y \in Ax, x \in D(A)\} = X$. In this note, we shall discuss the relation between semigroups systems and a family of m-accretive operators. We firstly prove the following

Theorem I. If A is an m-accretive operator, then the operator $A-y(D(A)\ni x\to Ax-y)$ is also m-accretive and there exists a semi-groups system $\{S_v(t)\,;\,t\geq 0,\,y\in X\}$ on the closure $\overline{D(A)}$ of D(A) such that for each $x\in \overline{D(A)}$ we have $S_v(t)x=\lim_{t\downarrow 0}\,(I+\lambda(A-y))^{-\lfloor t/2\rfloor}\cdot x$ uniformly in t on every bounded interval of $[0,\infty)$.

Proof. The proof of (1) and (2) is given by the Crandall-Liggett theorem and (3) is shown in a slightly different form by Bénilan (Thèse, Orsay (1972)). To give a straightforward proof of (3), we shall prepare the following inequality (suggested by I. Miyadera):

$$||S_{y}(t)x - x_{0}|| \leq ||S_{y}(s)x - x_{0}|| + \int_{s}^{t} \tau(S_{y}(\sigma)x - x_{0}, y - y_{0})d\sigma$$
 for $x \in D(A), y_{0} \in Ax_{0}$ and $t \geq s \geq 0$.

For the proof of (3)', we observe the *m*-accretiveness of A-y so that we define the *pseudo-resolvent* $J_{\lambda,y} = (I + \lambda(A-y))^{-1}$ for $\lambda > 0$ and make use of the fact that $u_k = J_{\lambda,y}^k x$ satisfies the difference equation: $\lambda^{-1}(u_k - u_{k-1}) + Au_k \ni y$, $u_0 = x$. We obtain, by (a)-(f),

$$\lambda^{-1}(\|J_{\lambda,y}^{k}x-x_{0}\|-\|J_{\lambda,y}^{k-1}x-x_{0}\|) \leq -\tau(J_{\lambda,y}^{k}x-x_{0},-\lambda^{-1}(J_{\lambda,y}^{k}x-x_{0}-(J_{\lambda,y}^{k-1}x-x_{0})) \\ = -\tau(J_{\lambda,y}^{k}x-x_{0},\lambda^{-1}(J_{\lambda,y}^{k-1}x-J_{\lambda,y}^{k}x)) \leq \lambda^{-1}\langle (J_{\lambda,y}^{k}x-J_{\lambda,y}^{k-1}x),f/\|f\|\rangle$$

for every $f \in F(J_{\lambda,y}^k x - x_0)$. By the accretiveness of A - y, there exists a $g \in F(J_{\lambda,y}^k x - x_0)$ such that $\langle -\lambda^{-1}(J_{\lambda,y}^{k-1} x - J_{\lambda,y}^k x) - (y - y_0), g \rangle \leq 0$. Hence, by (f), we obtain successively

$$\begin{split} & \langle \lambda^{-1}(J_{\lambda,y}^{k}x - J_{\lambda,y}^{k-1}x), \, g/\|g\| \rangle \leqq \langle -\lambda^{-1}(J_{\lambda,y}^{k-1}x - J_{\lambda,y}^{k}x) + (y_{0} - y), \, g/\|g\| \rangle \\ & + \langle y - y_{0}, \, g/\|g\| \rangle \leqq \langle y - y_{0}, \, g/\|g\| \rangle \leqq \tau(J_{\lambda,y}^{k}x - x_{0}, \, y - y_{0}), \\ & \|J_{\lambda,y}^{k}x - x_{0}\| \leqq \|J_{\lambda,y}^{k-1}x - x_{0}\| + \lambda \tau(J_{\lambda,y}^{k}x - x_{0}, \, y - y_{0}) \\ & = \|J_{\lambda,y}^{k-1}x - x_{0}\| + \int_{k_{\lambda}}^{(k+1)\lambda} \tau(J_{\lambda,y}^{k}x - x_{0}, \, y - y_{0}) d\sigma. \end{split}$$

Let $t \ge s \ge 0$ and add the latter for $k = [s/\lambda] + 1, \dots, [t/\lambda]$. Then

$$||J_{\lambda,y}^{[t/\lambda]}x-x_0|| \leq ||J_{\lambda,y}^{[s/\lambda]}x-x_0|| + \int_{([s/\lambda]+1)\lambda}^{([t/\lambda]+1)\lambda} \tau(J_{\lambda,y}^{[\sigma/\lambda]}x-x_0,y-y_0)d\sigma.$$

Since $||J_{\lambda,y}^{t,\prime,1}x-x_0|| \le ||J_{\lambda,y}^{t,\prime,1}x-J_{\lambda,y}^{t,\prime,1}x_0|| + ||J_{\lambda,y}^{t,\prime,1}x_0-x_0|| \le ||x-x_0|| + t ||z||$ with a $z \in Ax_0-y$, we can get (3)' from the Lebesque-Fatou lemma and the upper-semicontinuity of the functional τ by taking the $\lim\sup_{x\to\infty}$. Then,

taking $x_0 = J_{\lambda, y_2}^m x_2$ and $y_0 = \lambda^{-1} (J_{\lambda, y_2}^{m-1} x_2 - J_{\lambda, y_2}^m x_2) + y_2$ in (3)', we have $||S_{y_1}(t)x_1 - J_{\lambda, y_2}^m x_2|| \le ||S_{y_1}(s)x_1 - J_{\lambda, y_2}^m x_2||$

$$+ \int_{s}^{t} \tau(S_{y_{1}}(\sigma)x_{1} - J_{\lambda,y_{2}}^{m}x_{2}, y_{1} - \lambda^{-1}(J_{\lambda,y_{2}}^{m-1}x_{2} - J_{\lambda,y_{2}}^{m}x_{2}) - y_{2})d\sigma,$$

where the integrand is, by (b), (a) and (e), smaller than

 $\lambda^{-1}(\|S_{y_1}(t)x_1-J_{\lambda,y_2}^{m-1}x_2\|-\|S_{y_1}(\sigma)x_1-J_{\lambda,y_2}^{m}x_2\|)+\tau(S_{y_1}(\sigma)x_1-J_{\lambda,y_2}^{m}x_2,y_1-y_2).$ Let $0 \le a < b < \infty$ and $k=[a/\lambda]$, $i=[b/\lambda]$. Then, adding the above inequality for $m=k+1, \dots, i$ and taking the lim sup, we have

$$\begin{split} \int_{a}^{b} (\|S_{y_{1}}(t)x_{1} - S_{y_{2}}(\xi)x_{2}\| - \|S_{y_{1}}(s)x_{1} - S_{y_{2}}(\xi)x_{2}\|)d\xi &\leq \int_{s}^{t} (\|S_{y_{1}}(\sigma)x_{1} - S_{y_{2}}(a)x_{2}\| \\ - \|S_{y_{1}}(\sigma)x_{1} - S_{y_{2}}(b)x_{2}\|)d\sigma + \int_{s}^{t} d\sigma \int_{a}^{b} \tau (S_{y_{1}}(\sigma)x_{1} - S_{y_{2}}(\xi)x_{2}, y_{1} - y_{2})d\xi \end{split}$$

and so we obtain (3) by applying Lemma 1.2 in Bénilan's Thèse.

Now we are able to give a straightforward proof, based upon the idea of the *product integral*, of the following theorem of Bénilan:

Theorem II. Given a semigroups system $\{S_y(t); t \geq 0, y \in X\}$ on a closed set D in X, there exists exactly one m-accretive operator A such that $\overline{D(A)} = D$ and for all $x \in D$ we have $S_y(t)x = \lim_{\lambda \downarrow 0} (I + \lambda(A - y))^{-[t/\lambda]} \cdot x$ uniformly on every bounded interval of $[0, \infty)$.

Proof. Let \mathcal{I}_x be a mapping from C([0,T];X) into itself given by \mathcal{I}_x : $C([0,T];X)\ni u=u(t)\to\prod_0^t S_{y-u(\tau)}(d\tau)x$, where the product integral $\prod_0^t S_{y-u(\tau)}(d\tau)x$ is defined as below: Let $\{\mathcal{L}_a:0=t_0^a< t_1^a<\cdots< t_{n(a)}^a\}$

=t; $\alpha \in \mathcal{A}$ be a net of partitions of [0,t] with α contained in a directed set \mathcal{A} such that $\lim_{\alpha \in \mathcal{A}} \max_{1 \le i \le n(\alpha)} |t_i^{\alpha} - t_{i-1}^{\alpha}| = 0$. Then we can show that the net

of product $\prod_{i=1}^{n(\alpha)} S_{y-u(r_i^{\alpha})}(t_i^{\alpha}-t_{i-1}^{\alpha})\cdot x$, associated with the partition \mathcal{Q}_{α} , strongly converges to a certain point of X whenever $\lim_{\alpha\in\mathcal{J}}\max_{1\leq i\leq n(\alpha)}|t_i^{\alpha}-t_{i-1}^{\alpha}|$

=0, irrespective of the choice of points $\tau_i^a \in [t_{i-1}^a, t_i^a)$. In fact, let \mathcal{L}_{α} and \mathcal{L}_{β} be partitions of [0, t), and let \mathcal{L}_{γ} be the partition obtained by superposing these two partitions. Then we have, by (1),

$$egin{aligned} &\prod_{i=1}^{n(lpha)} S_{y-u(au_i^{lpha})}(t_i^lpha - t_{i-1}^lpha) x - \prod_{i=1}^{n(eta)} S_{y-u(au_i^{eta})}(t_i^eta - t_{i-1}^eta) x \ &= \prod_{j=1}^{n(eta)} S_{y-u(\sigma_j^{eta}, lpha)}(t_j^{eta} - t_{j-1}^{eta}) x - \prod_{j=1}^{n(eta)} S_{y-u(\sigma_j^{eta}, eta)}(t_j^{eta} - t_{j-1}^{eta}) x = I_{n(eta)}, \end{aligned}$$

where $\sigma_j^{r,\alpha} \in \{\tau_i^{\alpha}; 1 \leq n \leq (\alpha)\}$ and $\sigma_j^{r,\beta} \in \{\tau_i^{\beta}; 1 \leq i \leq n(\beta)\}$. Hence we have, by (3) and (a),

$$\begin{split} I_{n(r)} &= I_{n(r)-1} + \int_{t_{n(r)-1}^{r}}^{t_{n(r)}^{r}} \tau \left(S_{y-u(\sigma_{n(r)-1}^{r})}(s-t_{n(r)-1}^{r}) \prod_{j=1}^{n(r)-1} S_{y-u(\sigma_{j}^{r})^{\alpha}}(t_{j}^{r}-t_{j-1}^{r}) x \right. \\ &- S_{y-u(\sigma_{n(r)-1}^{r})^{\beta}}(s-t_{n(r)-1}^{r}) \prod_{j=1}^{n(r)-1} S_{y-u(\sigma_{n(r)-1}^{r})^{\beta}}(t_{j}^{r}-t_{j-1}^{r}) x, \\ &- u(\sigma_{n(r)-1}^{r,\alpha}) + u(\sigma_{n(r)-1}^{r,\beta}) \right) ds \\ &\leq I_{n(r)-1} + |t_{n(r)}^{r}-t_{n(r)-1}^{r}| \cdot ||u(\sigma_{n(r)-1}^{r,\alpha}) - u(\sigma_{n(r)-1}^{r,\beta})|| \\ &\leq \sum_{j=1}^{n(r)} |t_{j}^{r}-t_{j-1}^{r}| \cdot ||u(\sigma_{j-1}^{r,\alpha}) - u(\sigma_{j-1}^{r,\beta})||. \\ &\text{Thus} \quad \prod_{j=0}^{n} S_{y-u(r)}(d\tau) x = \lim_{r \in \mathbb{R}} \prod_{j=0}^{n(r)} S_{y-u(r_{j}^{r})}(t_{j}^{r}-t_{j-1}^{r}) x \text{ exists.} \end{split}$$

The above obtained mapping \mathcal{I}_x satisfies the following inequality

$$(5) \qquad \frac{\|\mathcal{I}_{x}u - \mathcal{I}_{x}v\|_{\mathcal{C}([0,T];x)}}{\leq \int_{0}^{T} \|u(t) - v(t)\| dt \Big(\|u - v\|_{\mathcal{C}([0,T];x)} = \sup_{t \in [0,T]} \|u(t) - v(t)\|\Big)}$$

so that, we have

(5)' $\|\mathcal{I}_{x}^{n}u - \mathcal{I}_{x}^{n}v\|_{\mathcal{C}([0,T];X)} \leq (n!)^{-1}T^{n} \|u-v\|_{\mathcal{C}([0,T];X)}$ (n=1,2,...). For the proof of (5), we prove, similarly as (4),

$$\begin{split} \left\| \prod_{j=1}^{n(\alpha)} S_{y-u(\boldsymbol{\tau}_{j}^{\alpha})}(t_{j}^{\alpha} - t_{j-1}^{\alpha}) x - \prod_{j=1}^{n(\alpha)} S_{y-v(\boldsymbol{\tau}_{j}^{\alpha})}(t_{j}^{\alpha} - t_{j-1}^{\alpha}) x \right\| \\ & \leq \sum_{i=1}^{n(\alpha)} (t_{i}^{\alpha} - t_{i-1}^{\alpha}) \cdot \| \boldsymbol{u}(\boldsymbol{\tau}_{i}^{\alpha}) - \boldsymbol{v}(\boldsymbol{\tau}_{i}^{\alpha}) \| \end{split}$$

and take the $\lim_{\alpha \in \mathcal{A}}$

By virtue of (5)', \mathcal{T}_x^n is a strictly contractive mapping in C([0,T];X) for sufficiently large n and so there exists one and only one fixed point of \mathcal{T}_x in C([0,T];X). Hence, for any $y \in X$, x and $x' \in X$, there exists the unique solutions u_0 and v_0 in C([0,T];X) respectively of the product integral equations of the Volterra type $u_0(t) = \prod_{i=0}^t S_{y-u_0(i)}(d\tau)x$ and $v_0(t) = \prod_{i=0}^t S_{y-v_0(i)}(d\tau)x'$. Since T was arbitrary, these solutions are

global ones and each of them has the limit as $t \to \infty$, which is the value of the resolvent of an m-accretive operator that we are intending to find. The proof: Let $T_y(t)x$ be the mapping given by $x \to u_0(t)$. Then we can prove that $T_y(t)$ is a semigroup on D and satisfies

(6)
$$\|T_y(t) - T_y(t)x'\| \leq \|T_y(s)x - T_y(s)x'\| - \int_s^t \|T_y(\sigma)x - T_y(\sigma)x'\| \, d\sigma$$
 for $t \geq s \geq 0$. To this purpose, we prove, similarly as (5)

$$\|\mathcal{I}_x u(t) - \mathcal{I}_{x'} v(t)\| \leq \|\mathcal{I}_x u(s) - \mathcal{I}_{x'} v(s)\|$$

(7)
$$+ \int_{-1}^{1} \tau(\mathcal{I}_{x}u(\sigma) - \mathcal{I}_{x'}v(\sigma), -u(\sigma) + v(\sigma))d\sigma,$$

where u and $v \in C([0, T]; X)$ and $t \ge s \ge 0$. Hence we have $\|\mathcal{I}^n_x u(t) - \mathcal{I}^n_{x'} v(t)\| \le \|\mathcal{I}^n_x u(s) - \mathcal{I}^n_{x'} v(s)\|$

$$+\int_{s}^{t} \tau(\mathfrak{T}_{x}^{n}u(\sigma)-\mathfrak{T}_{x'}^{n}v(\sigma),-\mathfrak{T}_{x}^{n-1}u(\sigma)+\mathfrak{T}_{x'}^{n-1}v(\sigma))d\sigma, \qquad (n=1,2,\cdots).$$

Thus we obtain (6) by (e) and by letting $n\to\infty$. In fact, the $\lim_{n\to\infty}\mathcal{T}_x^nu=u_0$ is the unique fixed point $T_y(t)x$ of \mathcal{T}_x , i.e., $u_0(t)=\prod_0^t S_{y-u_0(t)}(d\tau)x$. The obtained $T_y(t)$ is a contraction operator with Lipschitz constant e^{-t} , since $\|T_y(t)x-T_y(t)x'\|+\int_0^t \|T_y(\sigma)x-T_y(\sigma)x'\|\,d\sigma$ is monotone increasing in t by (6). We next show that $T_y(t)$ has the property (1). In fact, we have

$$T_{y}(t+s)x = u_{0}(t+s) = \prod_{0}^{t+s} S_{y-u_{0}(\tau)}(d\tau)x = \prod_{s}^{t+s} S_{y-u_{0}(\tau)}(d\tau) \cdot \prod_{0}^{s} S_{y-u_{0}(\sigma)}(d\sigma)x$$

$$= \prod_{0}^{t} S_{y-u_{0}(\tau+s)}(d\tau)u_{0}(s) = \prod_{0}^{t} S_{y-u_{0}(\tau+s)}(d\tau)T_{y}(t)x.$$

On the other hand, we have $T_y(t)T_y(s)x=\prod_t^t S_{y-\omega_s(t)}(d\tau)T_y(s)x=\omega_s(t)$ and hence, by the uniqueness of the solution of the product integral equation, we obtain $\omega_s(t)=u_0(t+s)$, i.e., $T_y(t)T_y(s)x=T_y(t+s)x$. Thus, by the Lipschitz constant e^{-t} of $T_y(t)$, we have $\lim_{t\to\infty}u_0(t)=\lim_{t\to\infty}T_y(t)x=x_0$,

where $x_0 = T_n(t)x_0$. Hence we must have

(8)
$$x_0 = S_{y-x_0}(t)x_0 \quad \text{for all } t \ge 0,$$

because x_0 is the solution of $u(t) = \prod_0^t S_{y-u(t)}(d\tau)x_0$, $u(0) = x_0$. We put (9) $A = \{\{x, y\}; S_y(t)x = x \text{ for all } t \ge 0\}.$

The accretiveness of A is easily seen by putting $S_{y_1}(t)x_1=x_1$ and $S_{y_2}(t)x_2=x_2$ in (3) and so the m-accretiveness of A is easily seen from (8). Hence by (3) we obtain (3)' whenever $\{x_0, y_0\} \in A$. It is proved by Bénilan that if $S_y(t)x$ satisfies (3)' then the orbit of $S_y(t)x$ is contained in $\overline{D(A)}$. Therefore, we can say that $\overline{D(A)}=D$. In order to complete our proof, we have to show that $S_y(t)x=\lim_{t\to 0} (I+\lambda(A-y))^{-\lfloor t/t\rfloor}\cdot x$.

However, this proof is easily obtained similarly to that of (3)'.