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(Communicated by Kodsaku Yosipa, M.J. A., Dec. 13, 1976)

Let X be a real Banach space. By the duality map of X into X*,
the dual space of X, we mean the multivalued mapping F of X into X*
defined by Fe={f € X*;<x, fo=|z|f=|SI}. The tangent functional
z(x, ¥) on X x X is defined by z(z, y)=l§1£101 t7(|e+ty|—||x]) for x,y € X,

and it is known that z(x, y) satisfies the following conditions: (a) z(x, ¥)
=llyll, ®) (@, ¥+ ) =@, ¥) +(x, ¥2), (¢) =(x, ay)=0a-z(x, y) for a =0,
@D —zl@, —y)=t(®,9), (@) (x,ax)=a|x| for real a, (f) ||z|-(x,y)
= jse%) {y,f>. By a semigroups system on a closed set DC X, we mean

a family {S,(¢); £=0,y € X} of operators from D into itself satisfying
@) S,(0)=I (the identity), S, (t+5)=8,(¢)S,(s),
2) lif‘ol S,®)x=x for z e D,

t

B) 118,02 — S, (B, ]| < |1S,u(8)%:— Sy, | + j £(8,,(0), — Spy(0)sr Yy

—1y,de for t=s=0 and x,, x, ¢ D with v,, ¥, € X.

A multivalued operator A defined on D(4A)C X with values in X is
called accretive if (x,—x,, ¥,—¥,)=0 for y, e Az, (¢=1,2), and an ac-
cretive operator A is called m-accretive if the range RI+A)={r+y;
yeAx,xe D(A)}=X. In this note, we shall discuss the relation be-
tween semigroups systems and a family of m-accretive operators. We
firstly prove the following

Theorem I. If A is an m-accretive operator, then the operator
A—y(DA) s x—Ax—1vy) s also m-accretive and there exists o semi-
groups system {S,(t); t=0,y € X} on the closure D(A) of D(A) such that
for each x € D(A) we have S”(t)w=£if§1 I+ (A —y) A g yuniformly in

t on every bounded interval of [0, co).

Proof. The proof of (1) and (2) is given by the Crandall-Liggett
theorem and (8) is shown in a slightly different form by Bénilan (Thése,
Orsay (1972)). To give a straightforward proof of (8), we shall prepare
the following inequality (suggested by I. Miyadera):

3y 1S0e—wlSIS,@v—ai)+ [ o(S,@)z—z, y—ydda
for x € D(A), ¥, Ax, and t=5=>0.
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For the proof of (8), we observe the m-accretiveness of A —y so that
we define the pseudo-resolvent J, ,=I+(A—y))™* for 2>0 and make
use of the fact that u,=J% a satisfies the difference equation: 2 *(u,
—Uy_)+Au, Y, uy=2. We obtain, by (a)-(f),
(|} =z || =1 I35 e — 2o [) S — (I} 8 — 20y — 27} 8 — 20— (I35 10— 20)
=—t(J} —2, 27U =I5 @) S AKIE o =I5, SIS
for every f e F(J%,x—ux,). By the accretiveness of A—y, there exists
a g e F(J% o —ux,) such that (—2"'(J¥;' e —J¥ ) — (Y—¥o), 9»<0. Hence,
by (f), we obtain successively
QAT o =I5, 9/ 91> =< =275 e —I% @) + Wo—1), 9/ 91D
+Y—Yo 9/ 9ID=Y—Y0r 9/ 119> S @ — 0, Y—Y0),
(542 — 2o [| S |55 % — o[+ 22(J @ — %o, Y — Vo)

(k+1)2
=HJ1‘,7,‘w—on+jM t(J} 4% — %o, Y —Yo)da.
Let t=5=0 and add the latter for k=[s/a]+1, ---,[t/2]. Then

([t/2]+1)2
1P —wl S I —al+ [ e — a0 Y~y da.
([s/2]+1)2

Since. [ J53 — | < | J54% — T, | 4 | 84500 — ol | < [l 2 — 0|+ £ | 2] with

azeAx,—y, we can get (3) from the Lebesque-Fatou lemma and the

upper-semicontinuity of the functional = by taking the lim sup. Then,
ai0

taking »,=J7,,2, and y,=2"'(J7 0, — I, %) + ¥, in (3), we have
1S4, (B2 — I 7,2, | S 1118, (8) % — I Ty |

3
+ L T(Sy,(a')x1 - J;”:ysx” Y— 2-1('];':;,1“2 - JZ’f,,,wz) —Y)da,
where the integrand is, by (b), (a) and (e), smaller than
2748y, D)2 — I 752, | = | Sy ()21 — T 7 ) + 7(S (@) %y — I 72, B2y Y1 —Y2)-

Let 0<a<b<oo and k=[a/2],t=[b/2]. Then, adding the above in-
equality for m=£k+1, - .., 4 and taking the lim sup, we have
210

j U8y (O%,— S, ., | — 1|8y ( s — S,y () DdE < j (18,,@,— S, (@)

— 118,05 — S, ®Ddo + [ do || (S, @0, 8, v~ 1)l

and so we obtain (3) by applying Lemma 1.2 in Bénilan’s Thése.

Now we are able to give a straightforward proof, based upon the
idea of the product integral, of the following theorem of Bénilan:

Theorem II. Given a semigroups system {S,(t); t=0,ye X} on a
closed set D in X, there exists exactly one m-accretive operator A such
that D(A)=D and for all z e D we have S,,(t)x:lgrol T+ 2(A—y) i g
untformly on every bounded interval of [0, co).

Proof. Let I, be a mapping from C([0, T1; X) into itself given
by 9,: C([0, T1; X) 5 u=u(t)— [[§ S, _u(dr)®, where the product inte-
gral T1§8, _uw(do)x is defined as below: Let {P,: 0=£;<t; <. .- <7,
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=t; @ € S} be a net of partitions of [0, {] with « contained in a directed

set /4 such that 1i13! ) gsai(c |tz —1t2_,]=0. Then we can show that the net
a€ n(a)

of product []#9 S,_uep(ti—1ti_)-x, associated with the partition 2,

strongly converges to a certain point of X whenever lim max |[t7—t7_,]
a€ J 1sisn(a)

=0, irrespective of the choice of points zf e [t:_,, t?). In fact, let P,
and &, be partitions of [0, ¢), and let P, be the partition obtained by
superposing these two partitions. Then we have, by (1),

n(a)

n()
11 Sy—u(r")(tg— trDr—1][ Sv—u(ff)(t'g —ti_)x
i=1 ¢ i=1
n(r) n(r)
=jl;11 S,,_u(,g,a)(tg—-tg_l)x——jllllS,,_u(,,;.ﬂ)(tg—-t;-l)x=1n(,),
where o e {rf; 1=n=(a)} and o € {c}; 1=<i<n(p)}. Hence we have,
by (3) and (a),

i ntp -1
Lngy=Ing-1+ . 2 Sz/—u(a;’g)_p(s_t%)—l) jﬂl S,,_u(,g,a)(tg—tg_l)w
tniny -1
-1

n
—Sw-u(o;’(i)_l) (s—thn-1) jl;[l Sv—uuﬁ’(ﬁ) &=t )z,

—Ulay )+ ular ) )ds

éln(r) 1+ By — ey 1] [l ulel) _1) —’LL(O'{,’(:) D
n(r)

= jZi [ty — 14 | ulop2) — ula’2) ||

Thus T Sy-uo(@)r=1m TS, w8 —t].)a exists.

(4)

The above obtained mapping T, satisfies the following inequality
1L su— T llo o, 2

< [Tl —o@ ) dt{lu—vloarn = sup [uth)—v)])

so that, we have
(5Y |Tu—Tlego,r: 0=@0DT" |u—vloq,r; x n=1,2,...).
For the proof of (5), we prove, similarly as (4),

n(a)

n(a)
11 8y-went—tr90— 11 Su-weptti—ti.0a)

=3 -t D — oD

(5)

and take the lim.

2€ ]

By virtue of (5), 9" is a strictly contractive mapping in C([0, T1; X)
for sufficiently large » and so there exists one and only one fixed point
of I, in C([0, T1; X). Hence, for any y € X, « and 2’ ¢ X, there exists
the unique solutions u, and v, in C([0, T'1; X) respectively of the prod-
uct integral equations of the Volterra type u,(£)=[]i S, _u,(d)x and
V() =T15Sy-vow(dr)2’. Since T was arbitrary, these solutions are
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global ones and each of them has the limit as t— oo, which is the value
of the resolvent of an m-aceretive operator that we are intending to
find. The proof: Let T,(t)x be the mapping given by x—u(f). Then
we can prove that T',(t) is a semigroup on D and satisfies

(8) T T, ISIT,@v—T, 0 || IT,(@)a—T,@a']| do

for t=s=0. To this purpose, we prove, similarly as (5)
| Lou®) — Lov@) | S| Lou(s) — Lo v(s) ||

+ j (T ul0) — T 0(0), —(e) +v(a))da,

where % and v e C([0, T]; X) and t=s=0. Hence we have
| Lou(t) — Lo v@) || S | Louls) — o v(9) |
+[ «Ttu0) - Te0@), ~ T o)+ TV Nds, (=12, ).
Thus we obtain (6) by (e) and by letting n—oco. In fact, the
lim 9%u=wu, is the unique fixed point T, (t)x of T, i.e., u(®)=1[]§Sy-uoc»
(dc)x. The obtained T,(t) is a contraction operator with Lipschitz
constant e~?, since || T,,(t)x—T,,(t)x’]l+J‘t T, (e)x—T, (0)x'|| do is mono-
0

tone increasing in ¢ by (6). We next show that T',(¢) has the property
(1). In fact, we have

t+s t+s $
Tyt + 9=t + 9= 1] Sy-0oo@T= ] 8y-usr(@)- ] Sy (d)a

(7)

¢ ¢
=11 S0 (@)% = [ Sy -uaiesn (@) Ty ().

On the other hand, we have T,(£)T, ()2 = [[§Sy_u, (d2) T (T =0,() and
hence, by the uniqueness of the solution of the product integral equa-
tion, we obtain w,(t)=ut+s), i.e., T,(O)T,(S)x=T, (t+s)x. Thus, by
the Lipschitz constant e~ of T, (f), we have lim u(¢)=lim T ,(H)z=x,,

t—oo ¢

where x,=T,(t)x,, Hence we must have

(8) Zo=8, _5,(0) 2, for all ¢=0,
because x, is the solution of u(f)=[[§ S, _u«(d)2, w(0)=x,, We put
(9) A={{x,y}; S,Ox=x for all {=0}.

The accretiveness of A is easily seen by putting S, (H)x,=2, and
S,.(O)x,=x, in (8) and so the m-accretiveness of A is easily seen from
(8). Hence by (3) we obtain (3)’ whenever {x,, ¥} € A. It is proved
by Bénilan that if S,(t)x satisfies (3)’ then the orbit of S,(t)x is contained
in D(A). Therefore, we can say that D(A)=D. In order to complete
our proof, we have to show that S,,(t)x:lli{xol T+ 2(A—y) A g,

However, this proof is eagily obtained similarly to that of (3)’.



