83. On the Zero Points of a Bounded Analytic Function.

By Masatsuga Tsujr.
Mathematical Institute, Imperial University of Tokyo.
(Received May 20. Comm. by T. Takagr, m.I.a., June 12, 1926.)

1. Let
(1)

$$
f(x)=1+a_{1} x+\cdots+a_{n} x^{n}+\cdots \cdots
$$

be regular for $|x|<1$ and x_{0} the zero point of $f(x)$ which has the smallest modulus. Without any further restriction on $f(x)$, there does not exist a positive constant ρ, such that $\left|x_{0}\right| \geqq \rho$ for all functions (1), as the following example shows: in fact $f(x)=1+n x$ has a root $x=-\frac{1}{n}$, whose modulus can be made very small by taking n sufficiently large. Now we impose on $f(x)$ the restriction :

$$
\begin{equation*}
f(0)=1, \quad \text { and } \quad|f(x)|<M \text { for } \quad|x|<1^{1)} \tag{2}
\end{equation*}
$$

For brevity, we call such a function $f(x)$ a function of class M, and will prove the existence of a positive quantity ρ_{n}, which has the following properties:

1) Every function of class M has at most $n-1$ roots in the circle $|x|<\rho_{n}$.
2) Among the functions of class M, there exists a function which has just n roots in the circle $|x| \leqq \rho_{n}$.

As we shall see later, the number of roots of a function of class M in the circle $|x| \leqq \rho_{n}$ can not exceed n and when there are just n roots in the circle $|x| \leq \rho_{n}$ all roots must lie on the circle $|x|=\rho_{n}$. We will call such a function of class M that has just n roots on the circle $|x|=\rho_{n}$ an extremal function.

Theorem I. Let ρ_{n} be the quantity defined above, then

$$
\rho_{n}=\frac{1}{\sqrt[n]{M}}
$$

the extremal functions are $f(x)=\frac{a_{1}-x}{1-\bar{a}_{1} x} \cdot \frac{a_{2}-x}{1-\bar{a}_{2} x} \cdots \frac{a_{n}-x}{1-\bar{a}_{n} x} \cdot \frac{1}{a_{1} \cdots a_{n}}$,

1) From $f(0)=1$ and $|f(x)|<M$ we have $M>1$.
where $\left|a_{1}\right|=\left|a_{2}\right|=\cdot=\left|a_{n}\right|=\frac{1}{\sqrt[n]{M}}$.
Proof. Let $f(x)$ be regular for $|x|<1$ and $|f(x)|<M$.
If $f(x)$ vanish at the points $x_{1}, x_{2}, \cdots x_{n}$ in the unit circle, then by Jensen's extension of Schwarz's theorem, ${ }^{1)}$ we have

$$
\begin{equation*}
|f(x)| \leqq M\left|\frac{x-x_{1}}{1-\bar{x}_{1} x} \cdots \frac{x-x_{n}}{1-\bar{x}_{n} x}\right| \quad \text { for } \quad|x|<1, \tag{3}
\end{equation*}
$$

where the equality holds only for

$$
\begin{equation*}
f(x)=e^{i \phi} M \prod_{k=1}^{n} \frac{x-x_{k}}{1-\bar{x}_{k} x} . \tag{4}
\end{equation*}
$$

Putting $x=0$ in (3) and considering $f(0)=1$ we have

$$
\begin{equation*}
\left|x_{1} \cdots x_{n}\right| \geqq \frac{1}{M} \tag{5}
\end{equation*}
$$

whence, supposing $\left|x_{1}\right| \leqq\left|x_{2}\right| \leqq \cdots \leqq\left|x_{n}\right|$, we get $\left|x_{n}\right|^{n} \geqq \frac{1}{M}$, or

$$
\begin{equation*}
\left|x_{n}\right| \geq \frac{1}{\sqrt[n]{M}} \tag{6}
\end{equation*}
$$

Hence by the definition of ρ_{n}, we must have

$$
\begin{equation*}
\rho_{n} \geqq \frac{1}{\sqrt[n]{M}} . \tag{7}
\end{equation*}
$$

Now we take $a_{1}, \cdots a_{n}$ so that $\left|a_{1}\right|=\cdots=\left|a_{n}\right|=\frac{1}{\sqrt[n]{M}}$, and form a function

$$
f(x)=\frac{a_{1}-x}{1-\bar{a}_{1} x}, \cdots \frac{a_{n}-x}{1-\bar{a}_{n} x} \cdot \frac{1}{a_{1} \cdots a_{n}},
$$

then $f(0)=1$ and $|f(x)|<M$ for $|x|<1$, hence $f(x)$ belongs to the class M and has n roots on the circle $|x|=\frac{1}{\sqrt[n]{M}}$, so that by the definition of ρ_{n}, we must have

$$
\begin{equation*}
\rho_{n} \leqq \frac{1}{\sqrt[n]{M}} \tag{8}
\end{equation*}
$$

From (7) and (8) we get

$$
\begin{equation*}
\rho_{n}=\frac{1}{\sqrt[n]{M}} . \tag{9}
\end{equation*}
$$

1) Jensen, Untersuchungen über eine Klasse fundamentaler Ungleichungen in der Theorie der analytischen Funktionen I, Klg. Dansk. Vidensk, Selk. skr. nat. og math. afd. (8) 23 (1916), 203-222.

Cf. G. Pólya und G. Szegö, Aufgaben und Lehrsätze aus der Analysis, I, 142. I am indebted to Mr. T. Shimizu for the suggestion of this inequality.

No. 6.]
From (6) we see $\left|x_{n+1}\right| \geqq \frac{1}{\sqrt[n+1]{M}}>\frac{1}{\sqrt[n]{M}}$, hence in a circle $|x| \leqq \frac{1}{\sqrt[n]{M}}$ there exist at most n roots of $f(x)$.

Let $f(x)$ be an extremal function so that it has just n roots $x_{1}, \cdots x_{n}$ in the circle $|x| \leqq \frac{1}{\sqrt[n]{M}}$, then

$$
\begin{equation*}
\left|x_{1} \cdots x_{n}\right| \geqq \frac{1}{M} \tag{5}
\end{equation*}
$$

And since

$$
\begin{equation*}
\left|x_{1}\right| \leqq \frac{1}{\sqrt[n]{M}}, \quad\left|x_{2}\right| \leqq \frac{1}{\sqrt[n]{M}}, \cdots \quad\left|x_{n}\right| \leqq \frac{1}{\sqrt[n]{M}} \tag{10}
\end{equation*}
$$

we have

$$
\begin{equation*}
\left|x_{1} \cdots x_{n}\right| \leqq \frac{1}{M} \tag{11}
\end{equation*}
$$

From (5) and (11) and (10) we get

$$
\begin{equation*}
\left|x_{1} \cdots x_{n}\right|=\frac{1}{M}, \quad\left|x_{1}\right|=\left|x_{2}\right|=\cdots=\left|x_{n}\right|=\frac{1}{\sqrt[n]{M}} \tag{12}
\end{equation*}
$$

We see by (12) that the equality in the formula (3) holds for $x=0$, hence $f(x)$ must be of the form (4), and considering $f(0)=1$ we get,

$$
f(x)=\frac{1}{x_{1} \cdots x_{n}} \cdot \frac{x_{1}-x}{1-\bar{x}_{1} x} \cdot \cdots \frac{x_{n}-x}{1-\bar{x}_{n} x}
$$

which completes the proof of the theorem.
2. As an application, consider an integral function of order ρ

$$
f(x)=1+a_{1} x+\cdots+a_{n} x^{n}+\cdots \cdots
$$

where $|f(x)|<e^{r \rho^{\prime}}$ for $|x| \leqq r$, and ρ^{\prime} is any quantity greater than ρ. Put $x=r z$ and $f(x)=\varphi(z)$, then we have

$$
|\varphi(z)|<e^{r r^{\prime}} \quad \text { for } \quad|z| \leqq 1 .
$$

Hence if we denote the roots of $\varphi(z)$ in the unit circle by $z_{1}, \cdots z_{n}$ and suppose $\left|z_{1}\right| \leqq\left|z_{2}\right| \leqq \cdots \leqq\left|z_{n}\right|$, we have from (6) $\left|z_{n}\right| \geqq e^{-\frac{r^{\rho^{\prime}}}{n}}$, or

$$
\begin{equation*}
\left|x_{n}\right| \geqq r e^{-\frac{r^{\prime}}{n}} \tag{13}
\end{equation*}
$$

where $x_{1}, \cdots x_{n}$ are the corresponding roots of $f(x)$ which lie in a circle $|x| \leqq r$. But if x_{n} lies outside the circle $|x|=r$, so that $\left|x_{n}\right| \geqq r$, then (13) evidently holds. Hence (13) holds for every r. Now the value of r hich makes $r e^{-\frac{r^{\prime} \rho^{\prime}}{n}}$ maximum is easily found to be

$$
r_{0}=\left(\frac{n}{\rho^{\prime}}\right)^{\frac{1}{\rho^{\prime}}}
$$

so that we have

$$
\left|x_{n}\right| \geqq\left(\frac{n}{e \rho^{\prime}}\right)^{\frac{1}{\rho^{\prime}}}
$$

Hence

Theorem II. If $f(x)=1+a_{1} x+\cdots+a_{n} x^{n}+\cdots$ is an integral function of order ρ, and $x_{1}, x_{2}, \cdots x_{n}, \cdots$ the roots of $f(x)$ in ascending order of absolute values, then

$$
\left|x_{n}\right| \geqq\left(\frac{n}{e \rho^{\prime}}\right)^{\frac{1}{\rho^{\prime}}}
$$

where $\rho^{\prime}>\rho$.
From this follows at once, for example, that $\sum_{n=1}^{\infty} \frac{1}{\left|x_{n}\right|^{\rho+\epsilon}}$ converges (Hadamard's theorem).

