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Landau has shown that, if fix) ao+ atx+az + is a trans-
cendental integral function, where a00,1, a0, then f(z) takes the
value 0 or 1 in a circle xl</(ao, a), where R depends only on a0 and
a, The following theorem gives some more information about the
dtributon of 0 and 1-points ofx) outside this circle.

eem. Zet f(x) ao+az+ be an integral function, whe
ao.O and f(x) 0, (0< x < z <...) and a and b be given con-
sn, then there ists a sequence of circles x = R, (0<R<..-)
sh that in any ring region R< [x[ R., (Re=0, =0, 1---), f(x) takes
the value a b; the radii of c@cles x &(=1, 2.--) depending only on, x (= 1, 2.--) and a, b.

The condition imposed on J(x) requires only that it should vanish at
x; the multiphcity of zo is arbitrary, and fix)may vanish at other
ints than

Lema. Und the condition oJ the theory, when a circle [= R
is given, we n find a ond circle ]] R (R<), so thatflx)k the
value a b in the ring region R< x R, whe R dends only On ao,
x, (v= 1, 2...), a, b and R.

Suppose that the lemma is false, then we can find a sequence of
circles x[ R (R<R<R...+)and functions f(x) so that f() does
not take the values a and b in the ring region R< [xR, where
satisfies the condition of our Theorem.

Since f(x), fx), do not take the values a and b
<]x R1, they form a normal faly, so that we can select a sub-
sequence fn(x), f(z), which converge uniformly in R< Ix <R.
ince fl), I), do not take the values a and b in the ring region
R< ]x R, we can select a sub-sequence fl), s() which converge
uniformly in Rx<R, and so on. Thus we get a sequence fn(x),
f(), f(x), which converge uniformly iu R<z[<R, where R is
any large number such that in R<]x <R there exists at least one
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They can not converge uniformly to infinity, since f,(x)--O; hence they
converge to a regular function. By Weierstrass’s theorem they converge
uniformly in the circle xl /, to a limiting function f(x), which, since
R is arbitrary, is an integral function.

On the other hand, f(z) is not a constant, since f(O)=ao:vO, f(x)=O;
and f(x) is not a polynomial, since it vanishes at infinitely many points x.
Hence f(x) is a transcendental integral function and it does not take the
values a and b outside the circle Il--R, in contradiction to the
theorem of Picard. Thus the lemms is proved.

Proof of the Theorem. By the lemma we can find a circle xt R,
in which f(x)takes the value a or b, and then the second circle x R._,,
so that f(.r) takes the value a or b in the ring region RlxI R.,.,
and so on. In this way we obtain a sequence of circles ]xl R, such
that lira R,--vo, since, if not, there must exist a circle [I= R’, so that

R.R, (n=l, 2.--), and in which f(x) takes the value a or b infinitely
many times, contradictory to the hypothesis that f(x) is an integral
function. Thus the theorem is proved.

Remark. Several extention of the theorem may be made; for
example, instead of giving ao itself, we may suppose only
where k0 is given.


