118. On a Generalization of Picard's Theorem.

By Masatsugu Tsuji.

Mathematical Institute, Tokyo Imperial University.

(Rec. July 15, 1926. Comm. by T. TAKAGI, M.I.A., Oct. 12, 1926.)

Landau has shown that, if $f(x) = a_0 + a_1x + a_2x^2 + \cdots$ is a transcendental integral function, where $a_0 \neq 0, 1, a_1 \neq 0$, then f(x) takes the value 0 or 1 in a circle $|x| \leq R(a_0, a_1)$, where R depends only on a_0 and a_1 . The following theorem gives some more information about the distribution of 0 and 1-points of f(x) outside this circle.

Theorem. Let $f(x) = a_0 + a_1x + \cdots$ be an integral function, where $a_0 \neq 0$ and $f(x_{\nu}) = 0$, $(0 < |x_1| < |x_2| < \cdots > \infty)$ and a and b be given constants, then there exists a sequence of circles $|x| = R_{\nu}$, $(0 < R_1 < R_2 \cdots > \infty)$ such that in any ring region $R_{\nu} < |x| \leq R_{\nu+1}$ $(R_0 = 0, \nu = 0, 1 \cdots)$, f(x) takes the value a or b; the radii of circles $|x| = R_{\nu}$ $(\nu = 1, 2 \cdots)$ depending only on a_0, x_{ν} $(\nu = 1, 2 \cdots)$ and a, b.

The condition imposed on f(x) requires only that it should vanish at x_{ν} ; the multiplicity of zero is arbitrary, and f(x) may vanish at other points than x_{ν} .

Lemma. Under the condition of the theorem, when a circle |x| = R is given, we can find a second circle |x| = R' (R < R'), so that f(x) takes the value a or b in the ring region $R < |x| \le R'$, where R' depends only on a_0 , x_{*} ($\nu = 1, 2\cdots$), a, b and R.

Suppose that the lemma is false, then we can find a sequence of circles $|x| = R_{\nu}$ $(R < R_1 < R_2 \dots \rightarrow \infty)$ and functions $f_{\nu}(x)$ so that $f_{\nu}(x)$ does not take the values a and b in the ring region $R < |x| \leq R_{\nu}$, where f(x) satisfies the condition of our Theorem.

Since $f_1(x)$, $f_2(x)$, do not take the values a and b in $R < |x| \leq R_1$, they form a normal family, so that we can select a subsequence $f_1(x)$, $f_{12}(x)$,...., which converge uniformly in $R < |x| < R_1$. Since $f_{12}(x)$, $f_{13}(x)$,.... do not take the values a and b in the ring region $R < |x| \leq R_2$, we can select a sub-sequence $f_{22}(x)$, $f_{23}(x)$ which converge uniformly in $R < |x| < R_2$, and so on. Thus we get a sequence $f_{11}(x)$, $f_{22}(x)$, $f_{33}(x)$,..... which converge uniformly in $R < |x| < R_2$, and so on. Thus we get a sequence $f_{11}(x)$, $f_{22}(x)$, $f_{33}(x)$,..... which converge uniformly in R < |x| < R', where R' is any large number such that in R < |x| < R' there exists at least one x_p . No. 8.]

They can not converge uniformly to infinity, since $f_{nn}(x_r)=0$; hence they converge to a regular function. By Weierstrass's theorem they converge uniformly in the circle |x| < R', to a limiting function f(x), which, since R' is arbitrary, is an integral function.

On the other hand, f(x) is not a constant, since $f(0)=a_0\neq 0$, $f(x_r)=0$; and f(x) is not a polynomial, since it vanishes at infinitely many points x_r . Hence f(x) is a transcendental integral function and it does not take the values a and b outside the circle |x| = R, in contradiction to the theorem of Picard. Thus the lemms is proved.

Proof of the Theorem. By the lemma we can find a circle $|x| = R_1$, in which f(x) takes the value a or b, and then the second circle $|x| = R_2$, so that f(x) takes the value a or b in the ring region $R_1 < |x| \le R_2$, and so on. In this way we obtain a sequence of circles $|x| = R_{\nu}$, such that $\lim_{n \to \infty} R_n = \infty$, since, if not, there must exist a circle |x| = R', so that $R_n < R'$, $(n=1, 2\cdots)$, and in which f(x) takes the value a or b infinitely many times, contradictory to the hypothesis that f(x) is an integral function. Thus the theorem is proved.

Remark. Several extention of the theorem may be made; for example, instead of giving a_0 itself, we may suppose only $|a_0| \ge k_0 > 0$, where k_0 is given.