2. Projective Differential-Geometrical Properties of the One-Parameter Families of Point-Pairs in the One-Dimensional Space.

By Akitsugu Kawaguchi.
Mathematical Institute, Tôhoku Imperial University, Sendai.

(Rec. Dec. 20, 1920. Comm. by M. Fujiwara, m.i.a., Jan. 12, 1927.)

1. When we consider point-pairs in the one-dimensional space as space element, we can treat a one-parameter family of point-pairs in quite similar way as a curve in the two-dimensional space.

In the homogeneous point-coordinates (x_{1}, x_{2}) a point-pair is represented by the equation

$$
\sum_{i, k} a_{i k} x_{i} x_{k}=0 \quad(i, k=1,2)
$$

therefore we take $a_{i k}$ as the homogeneous coordinates of a point-pair, and

$$
a_{i k}^{*}=\left|a_{l m}\right|^{-\frac{1}{2}} a_{i k}
$$

as its normalized coordinates.
2. Let $a_{i k}(t)$ be the normalized coordinates of a one-parameter family F of point-pairs, and let

$$
(m, n)=\left|\begin{array}{ll}
a_{11}^{(m)} & a_{12}^{(n)} \\
a_{21}^{(m)} & a_{22}^{(n)}
\end{array}\right|+\left|\begin{array}{ll}
a_{11}^{(n)} & a_{12}^{(m)} \\
a_{21}^{(n)} & a_{22}^{(m)}
\end{array}\right|,
$$

where

$$
a_{i k}^{(m)}=\frac{d^{m} a_{i k}(t)}{d t^{m}}
$$

Then evidently the relations

$$
(0,0)=2, \quad(1,0)=0
$$

hold good, while $(1,1)$ does not identically vanish in general. So as the natural parameter we adopt

$$
p=\frac{1}{i \sqrt{2}} \int \sqrt{(1,1)} d t
$$

instead of t and denote $(2,2)$ by $2 I$. We call the quantity p the projective
length and $I(p)$ the projective curvature of the family F, which are both invariant under the projective transformation group.
3. We can prove the fundamental theorem :

When I be given as a once continuously differentiable function $f(p)$ of the projective length p, the family of point-pairs with the projective curvature I and the projective length p is uniquely determined, except for the projective transformations.

We consider, therefore, $I=f(p)$ as the natural equation of the family.
4. We can easily see that the point-pair $a_{i_{k}}^{\prime}(p)$ belongs to the involution, determined by the two point-pairs $a_{i k}(p)$ and $a_{i k}(p+d p)$, and is harmonic with the point-pair $a_{i k}(p)$. For the family of such a point-pair the projective length and the projective curvature are respectively

$$
p_{1}=-i \int I^{\frac{1}{2}} d p \text { and } I_{1}=\frac{I I^{\prime 2}(3-4 I)}{2(1-I)}+2 I^{4}
$$

5. Further we can prove the following theorems.

Theorem 1. Two continuous point-sets of the family F having the constant projective curvature correspond projectively to each other and all point-pairs represented by $a^{\prime}{ }_{i k}(p)$ belong to an elliptic or a hyperbolic involution, according as the curvature is negative or positive, and conversely.

Theorem 2. In the family F having projective curvature $I=0$, the point-pairs represented by $a^{\prime \prime}{ }_{i k}(p)$ consist always of two coincident points, and conversely.

Theorem 3. All point-pairs of the family F having the projective curvature $I=1$ belong to an involution, and conversely.

Theorem 4. Every point-pair of the family F, for which $(1,1)$ identically vanishes, contains always a fixed point, and conversely.
6. I shall here add the geometrical meaning of the projective curvature. If we consider a family F having the constant projective curvature, we can see from Theorem 1, that there exist two point-pairs P_{1}, P_{2} consisting respectively of two coincident points in the family \boldsymbol{F}. The anharmonic ratios of the point-pairs of the family F with regard to two points P_{1}, P_{2} are all equal, and when we denote this anharmonic ratio by k, the projective curvature is equal to

$$
I=-\frac{1}{4 k}(k-1)^{2}
$$

This is a geometrical meaning of the projective curvature, whose sign is opposite to that of k.
7. We find in general as the canonical expansions for the family F

$$
\begin{aligned}
& a_{11}=1+p+\frac{1}{2!} p^{2}+\frac{1}{3!} I_{0} p^{3}+\cdots \cdots, \\
& a_{22}=1-p+\frac{1}{2!} p^{2}-\frac{1}{3!} I_{0} p^{3}+\cdots \cdots \\
& a_{12}=\quad+\frac{1}{2!} \sqrt{1-I_{0}} p^{2}-\frac{I_{0}^{\prime}}{3!2 \sqrt{1-I_{0}}} p^{3}+\cdots \cdots,
\end{aligned}
$$

where I_{0} is the value of the projective curvature for $p=0$.

