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The object of this paper is to prove a converse of Cauchy’s theorem
concerning limit and give alternate proofs of Doetsch’s theorem and
the well-known Cesro-Tauberian theorem due to Hardy and Landau.

Theorem I. If
na (n- 1)a_, n :> 1,

(2) lim a, +a+ +a. L

implies lim a=L.

Proof. Since the sequence (na) is monotone increasing, its limit
exists. If the limit of (na) is finite, then a-*0, consequently L must
be 0. In this case the theorem is evident. If L == 0, the limit of (na)
can not be finite. Thus we have to discuss the case, where na tends
to infinity.

Plainly we can suppose that a is positive for all n. For any
positive number e, there is an integer no such that

(3) a+a+ +a -L <

for n no. Let p be a fixed positive integer, then

a+a.+ +a+a++ +a/[] <:L+

for n no, where Ix] denotes the integral part of x.
From (3), we have
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(4)
a++ +a+[_]

and from (1), it results

(5) a./ >__
n+q

for any positive integer q. Putting (5) into (4), we have

( ( )n + + a, n+ <22+ 1- L,

where r.-- 1 + __1 + +1_log n, which tends to the Euler’s constant.
2 n

If be an arbitrary positive number, then there exists an integer n
such that r+[-] r <:: , for n ::>_ n.

{ (1) } (1 1)Thus we have log 1 +- r a <: 4s + -+ --n L,

for n >__ Max (no, n). Letting n-* oo, we have

lima,, log 1+-- -y <_4+

Since and are arbitrary, lim a._<_ L
, o (1+_)

Since p is arbitrary, we have by letting p-,

(6) lima < L.

Next, for any positive number , there is an n such that
a+a.+ +a[] +a[]+/ + a,

for n::>p(n+ 1), where p is a fixed positive number > 1. Hence

(7) L <
a,+a+ + a[_] + a[__]+l + +a

n
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Putting (5) into (7), we have

/ al +a+ +a[]
+1 +2

p n
for n M(P(n2+ 1), m). tting n , we have

L -e + (log p+ ) lima+.
p = p

Since e and are arbitrary, we have

log
tting 1, we hae

(8) L lira.
Nrom (7) and (8), we have finally

lira=L,

whieh is the requir result.. Theorem II. Pt S. If S> ,
he the fet ht i (, r) ble (r> 1),

Proof. Without loss of generality, we can su tha =.
or our urose, it is sueien to rove that if

2 n t/

then Sx + S.+ +S, -- Ln
We can suppose that k=O. For otherwise we take S/k for S.

Then the theorem is evident from Theorem I.
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Theorem III. If (na-(n-1)a_) is (C, r) summable to L, r

being positive and na-k, then a+ 2a,. + +na tends to L.

If we take na.-(n-1)a._ for a. in Theorem II (ao=O), then we
have Theorem III.

Theorem IV. The series, which is one-sidedly bounded (C, r)
(r 1) and (C, ) summable, is (C, r+ 1) summab.

This theorem is due to Dr. Doetsch.
Proof. If the series is (C, r+l) summable, then the arithmetic

mean of (C, r) partial sum tends to a limit. Therefore the theorem is
valid by Theorem II, where r is any number greater than -1.

3. Theorem V. If a, is (C, r) summab and na, -k, then
1

a, converges.
1

This is the Hardy-Landau’s theorem.
Proof. We can suppose that r is an integer. Let

T)= a

TcnI)=T(), v(n1,- T
1)

n

T(r-l) T(nr) T(nr)
n

and U() ](a- (’-- 1)a_),
1

U2)=Na, u)- Un(1)

Tr)=- -) ")-- (r 1)
n

()=T)-r) and inThen we have U)-nT) ,), consequently u.
general .(r+l) -(r) T(r+l)

I a, is (C, ) summable, then nds to limit nd hence

+" tends to zero. Therefore (a.-( 1)a._) is (C,+1)

summable to zero. Hence by Threm III, we have
ax+2a2+ +a 0.

Consequently is convergent. Thus the theorem is proved.


