PAPERS COMMUNICATED

103. A Theorem on the Conjugate Functions.

By Tatsuo Kawata.
Mathematical Institute, Tohoku Imperial University, Sendai.
(Comm. by M. Fujiwara, m.I.A., Dec. 12, 1936.)

I will, in the present paper, show that a function and its conjugate function can not be both very small at $\pm \infty$. Or I will prove the following theorem.

Theorem. Let $p(x)$ be defined for $x>0$ and positive and be such that $e^{-p(x)}$ is squarely integrable in $(-\infty, \infty)$. Then in order that there should exist a non-null function $f(x)$ defined in $(-\infty, \infty)$ such that $f(x)$ and its conjugate function $\bar{f}(x)$ are both in absolute values smaller than $A e^{-p(|x|)}$ almost everywhere, where A is a constant independent of x, it is necessary and sufficient that

$$
\int_{0}^{\infty} \frac{p(x)}{1+x^{2}} d x
$$

should be convergent.
We can prove this theorem by combining the Paley and Wiener's fundamental theorem in the theory of quasi-analytic functions ${ }^{1}$ and a theorem due to E.C. Titchmarsh which can be stated as follows:

If $f(x)$ is squarely integrable and $\boldsymbol{F}(x)$ is its Fourier transform, then the Fourier transform of the conjugate function of $f(x)$ is $-i F^{(x)} \operatorname{sgn} x .^{2)}$

Necessity. Let $f(x)$ be non-null and be such that

$$
\begin{equation*}
|f(x)| \leqq A e^{-p(|x|)}, \quad|\bar{f}(x)| \leqq A e^{-p(|x|)} \tag{1}
\end{equation*}
$$

If $F(x)$ denotes the Fourier transform of $f(x)$, then, by the Titchmarsh's theorem, the Fourier transform of $\bar{f}(x)$ is $-i F^{\prime}(x)$ sgn x. Clearly $\boldsymbol{F}(x)$ is non-null and we suppose that it is not null for $x>0$, otherewise we can proceed similarly. Then we have

$$
f(x)+i \bar{f}(x) \sim \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} F(t) e^{-i t x} d t=\sqrt{\frac{2}{\pi}} \int_{-\infty}^{0} F(-t) e^{i t x} d t
$$

Or $f(x)+i \bar{f}(x)$ is the Fourier transform of a function vanishing for positive arguments. Hence we have, by the Paley and Wiener's theorem,

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{|\log | f(x)+i \bar{f}(x)| |}{1+x^{2}} d x<\infty . \tag{2}
\end{equation*}
$$

From (1) we have

$$
p(|x|) \leqq 2|\log A|+|\log | f(x)+i \bar{f}(x)| |
$$

[^0]Thus from (2) we reach the result:

$$
\int_{-\infty}^{\infty} \frac{p(|x|)}{1+x^{2}} d x<\infty .
$$

Sufficiency. Let $\int_{-\infty}^{\infty} \frac{p(|x|)}{1+x^{2}} d x<\infty$. Then by the Paley and Wiener's theorem there exists a non-null function $f(x)$ such that $f(x)=0$ for $x>x_{0}$ for some x_{0} and its Fourier transform $F(x)$ satisfies

$$
e^{-p(|x|)}=|F(x)| .
$$

We can suppose that $x_{0}=0$, for otherwise we consider the function $f\left(x-x_{0}\right)$, its Fourier transform being in the absolute value equal to $|\boldsymbol{F}(x)|$. Let the conjugate function of $F(x)$ be $\bar{F}(x)$. By the Titchmarsh's theorem, we can see that $\overline{\boldsymbol{F}}(x)$ is the Fourier transform of $-i f(x) \operatorname{sgn} x$ which is really $i f(x)$, since $f(x)$ is zero for $x>0$. Thus $|\bar{F}(x)|=|\boldsymbol{F}(x)|$. Thus the theorem is proved.

[^0]: 1) Paley and Wiener, Fourier transforms in the complex domain, Amer. Math. Soc. Colloqiam.
 2) Titchmarsh, Conjagate trigonometrical integrals, Proc. London Math. Soc. 24 (1925).
