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(Comm. by T. TAKAGI, M.LA., Oct. 12, 1938.)

S$1. Introduction. In a recent paper C. Visser” discussed the
iteration of linear operations in a Hilbert space and proved the follow-
ing theorems :

Theorem I. Let E be a Hilbert space and A a linear operator
which maps E in itself. If {A"} (n=1,2,...) s uniformly bounded,
then there exists a bounded linear operator A,, which maps E in

itself, such that %—(A+A2+--'+A") converges weakly to A,.

Theorem II. If in addition to the assumptions in Theorem I, A
18 completely continuous, then the weak comvergence in Theorem I may
be substituted by the strong convergence.

In Visser’s proof, the notion of inner product is indispensable, and
therefore it is not applicable to the case of general Banach spaces. It
is the purpose of the present paper to show that these theorems are
also valid in general complex Banach spaces. Moreover, we can show
that even in general complex Banach spaces the weak convergence in
Theorem I may be substituted by the strong one (Theorem 2)? and
that the stromg convergence in Theorem II by the uniform one (Theo-
rem 4). The former is a generalisation of J. v. Neumann’s Mean
Ergodic Theorem® and the latter is an analogue of M. Fréchet’s theo-
rem ;¥ and following the same way, the results of N. Kryloff and N.
Bogoliottboff® are also generalised to the case of general complex Banach
spaces (Theorem 5).

The results of this paper are obtained in collaboration with K.
Yosida. Theorem 2 is obtained by him directly,” and Theorem 4 and
5 are also obtained by him in different ways.” I shall, however, give
the outline of my proof, since we can treat all these problems in a
unique way and since the method itself, I believe, is not without
interest. In concluding the introduction, I should like to express my
hearty thanks to K. Yosida for his kindness in the course of this work.

1) C. Visser: On the iteration of linear operations in a Hilbert space, Proc. Acad.
Amsterdam, 41 (1938), 487-495.

2) This is an essential advance! This is proved by K. Yosida. See the foregoing
paper of K. Yosida: Mean Ergodic Theorem in Banach spaces.

3) J. v. Neumann: Proof of the quasi-ergodic hypothesis, Proc. Nat. Acad. U.S.A.
18 (1932), 70-82.

4) M. Fréchet: Sur lallure asymptotique de la suite des itérés d’un noyau de
Fredholm, Quart. Journ. of Math., 5 (1934), 106-144.

5) N. Kryloff et N. Bogoliouboff: Sur les probabilités en chaine, C. R., 204 (1937),
1386-1388.

6) See the paper of K. Yosida cited in (2).

T) See the foregoing paper of K. Yosida: Abstract integral equation and the
homogeneous stochastic process.
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§2. Let E be a complex Banach space and A a bounded linear
operator which maps E in itself. A is called to be weakly completely
continuous if it maps the unit sphere [z <1 of E on a weakly compact
(in E) set of E.

Theorem 1. Let A be a weakly completely continuous operator
which maps E in itself. If there is a constant C such that |A™|<C
for n=1,2, ..., then there exists a bounded linear operator A, which
maps E in itself, such that

(i) %;(A+A2+~-+A”) converges weakly to A,,

(i) 14,1,

(iii) A4,=A4,A"=A4, for n=1,2,...,

(iV) A%':Al.

Proof. We may assume without the loss of generality that E is

separable, since otherwise we have only to consider, for any xe E, the
closed linear subspace E, of E which is spanned by {A"xr} (n=1,2,...).Y

Since {%(A+A2+~-+A”)x} (n=1,2,...) is weakly compact for any
xe E, we can choose (diagonal method !) a subsequence {n,} (»=1,2,...)
of {n} (n=1,2,...) such that 1 (A+ A%+ -+ A™)x (v=1,2,...) con-

(4

verges weakly to a point of E at a countable subset which is dense
in E. Since {% (A+A2+---+A"v)} is uniformly bounded, we can see
1

(4

Ayx) of E for any point # of E; that is,

from this that

(A+ A%+ ---4+ A™)x converges weakly to a point (say

1 (A+A42%+---+A™) con-

n,
verges weakly to a linear operator A4, which maps E in itself.
Thus the linear operator A; is determined. We have, however,
hitherto proved only that

iy nl (A+A2%+---+ A™) converges weakly to A;,
and yet (i) is not proved. Before coming to the proof of (i), let us
consider the properties (i), (iii) and (iv). (ii) is evident. In order to
prove (iii), multiply (i)’ by A from the left. Then we have:

L(A2+A3+---+A”u“1) converges weakly to AA,.

n,
Consequently, since
‘ ; (A+A2+'“+A”g)—:; (A2 A%+ -+ A™YY)
___‘ 1 (A_Any+1) éz_c’__)oy
ny ”

1) It will be easily seen that A is a weakly completely continuous operator which
maps Ey in itself. (By a theorem of Banach-Mazur, E is also weakly closed!).
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we have (with ()’) that AA;=A, The relation A,A=A4; may be

proved analogously. Hence (iii) is proved for n=1, and the case for
general n follows from this directly. If we multiply (i) again by A4,
from the left, then we have:

1

n,

Since by (iii)) 4;4"=A4, for n=1, 2, ..., the left hand side is equal to
A, and hence (iv) is proved.

Now, in order to prove (i), assume that (i) is not true. Then

there is a point 2eE and a subsequence {m,} (»=1,2,...) of {n}

(n=1,2, ...) such that 1 (A+A%+---+ A™)x, converges weakly to

(A A+ A, A%+ ---+ A1A™) converges weakly to A2

Yo Ay Starting from this sequence {m,} (»=1,2,...) and applying
the diagonal method again, we shall have a subsequence {n,}(»=1,2,...)
of {m,} (»=1,2,...) and a bounded linear operator Aj, which maps F
in itself, such that

i)’ ,':—,(A+A2+---+A”-") converges weakly to Aj.
Aj satisfies the same properties (ii), (iii) and (iv) as 4,, and 4,3 A4]
since A=y A, If we now multiply (i)’ by A; from the left,
then we have (using 4;4"=A,) that A;=A4,;A47. On the other hand,
multiplying (i) by Ai from the right, we have A{=A,4;, which leads
to a contradiction since A;3 A7 Hence (i) must be true.

Theorem 2. The weak convergence in Theorem 1 may be substi-
tuted by the strong convergence.

Proof. Let the range of I—A (I is an identical transformation)
and of I—A,; be R and R, respectively. It is clear that any point of
R, is a weak limiting point of R,” and since R is a linear subspace,
it is also a strong limiting point of R.? Hence we have R, < R.

Now, put x=Ax+(x—Ax) for any xe E. Since A"Ax=A;x for
n=1,2,... and since x—Axe Ry TR, the proof will be completed if

we can prove that %(A+A2+'--+A") (x—Ax)||—0 or, more gene-

rally, that for any ye B we have l —0. This is

—?1;(A+A2+---+A”)y
clear if yeR; for, since y=x—Ax with zekE, we have
Lararrany|= | Lararra -t = | L a-

A”“)x“—-) 0. If in general yeR, then for any ¢=>0 there exists a
y*e R with |ly—y*l|<<e. For this y* we have:

1) Consider that I—-%(A+A’+--~ +A”)=%(I—A)(nI+('n—1)A+(n—2)A’ 4o+ An-1)

converges weakly to I—A4,.
2) Theorem of Banach-Mazur.
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lim
N>

,%(A+A2+---+A")y

!gﬁn‘
n >0

|%(A+Az+-~+Aﬂ)y*

+1im
n->oo

—1~(A+A2
n

and since ¢>0 is arbitrary, we have

%(A+A2+---+A")y.—>

Theorem 3. Under the same assumptions as in Theorem 1 we
have: For any complex number A with || =1 there exists a bounded
linear operator A,, which maps E in itself, such that

(i) o (A + —4—+ +£) converges strongly to A,;,

(ii) 14156,

(iii) A”A1=A1A”=A”Al fO’r n=1, 2, ceey

(iV) A?l:Ab

(v) 2%p tmplies A;A,=A,A;=0,

(vi) A;>0 if and only if 1 is a proper value of A.

If we further put A’=A—-iE:/1,-Ali Jor any 2; with 2;3%4; (137) and
4,50 (¢=1,2, .ee, D), then we have

(vii) A4, A'=A'A;=0 for i=12,...,p,

(viii) AA'=A'A=A"

(ix) A”=§A?A,i+A’” for n=1,2, ..., and there exists a con-

stant C’ such that we have |A™| < C' for n=1,2, ...,

(x) 2 i3 a proper value of A’ if and only if it is a proper value
of A and 22; for i=1,2,...,p

We omit the proof.

§3. In this chapter we are concerned with completely continuous
operators. A linear transformation of a complex Banach space E in
itself is called to be completely continuous if it maps the unit sphere
lzl<1 of E on a compact (in E) set of E.

Theorem 4. Let A be a completely continuous linear operator
which maps E in itself. If there is a comstant C such that |A*|<ZC
for n=1,2, ..., then we have :

(i) For any complex number A with |1| =1 there exists a com-
pletely continuous linear operator A;, which maps E in itself, such that

[L(A4 2y &)y,

where M is a comstant which is independent of n. Moreover, A, has
the properties (ii)~(x) of Theorem 3.

(i) In order that A™ converges uniformly to a zero operator, it
s necessary and sufficient that A has mo proper values of absolute
value 1.

(iii) In order that A™ converges uniformly to a linear operator

<M fr n=12,..,
n
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A; X0, it is necessary and sufficient that A has a proper value 1 and
no proper values of absolute value 1.

In (i) and (iii) if A™ converges uniformly, it is of the order of
geometrical progression ; that is, there are a positive number & and a
constant M independent of n such that we have |A™[| < M-(1—06)" and
lA*— A< M- (1—0)" respectively for n=1,2, ....

Proof. By a theorem of F. Riesz® the proper values of a com-
pletely continuous linear operator do not accumulate to a point 213¢0.
Hence the proper values 2 of A with |1| =1 are finite in number, and
if we denote these by 1, 2, .-, 4, and consider the linear operator

A =A—- 21 AA, then there is a constant 60 such that A’ has no

proper Values A with |A|=1-6.2 Consequently there is a constant M
such that [A™[Z<M-(1-06)" for n=1,2,.... The rest of the proof

will now be almost obvious, if we consider Theorem 3 (especially
property (ix)).s’

We shall now proceed to the generalisation of a theorem of Kryloff
and BogoliotubofT.

Theorem 5. Let A be a bounded linear operator which maps E
in itself. If there is a constant C such that |A”|ZC for n=1,2, ...
and if there are an integer k and a completely comtinuous linear
operator V such that |A*— V| =a<<1, then for any complex number 2
with || =1 there exists a completely continuous linear operator A,
which maps E in itself, such that

“1 A A? A
A

+ 4 +——) A <M

for n=12,...,

where M is a constant which is independent of n.
Moreover, all what we have obtained in Theorem 3 and 4 is also
true for this case, except the fact that A’ is completely continuous.
Proof. It will be sufficient if we prove the case k=1. We shall

prove first that l(A+A‘~’+~-+A") converges strongly to a linear
n

operator A;. For this purpose it will be sufficient if we can prove

that for any weE the set {l(A+A2+---+A")x} (n=1,2,...) is total-
n

ly bounded ; for all what we have needed is the existence of a (weakly

or strongly) convergent subsequence. In order to prove the total

boundedness, let ¢=>0 be an arbitrary positive number and consider
the linear operator V,=A4"—(A—V)?, where p is an integer such that

C-a® -||a:|l<§. V, is completely continuous, since expanding the right

hand side the term A? vanishes and there remain only those terms
which contain at least one V-factor. Take an m, so large that

1) F. Riesz: Uber lineare Funktionalgleichungen, Acta Math., 41 (1918), 71-98.
2) Since {A»} is uniformly bounded, A has no proper values A with |A|>1.
3) It will be easily seen that A; and A’ are completely continuous.
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ﬁ-C-l{xll<§, then we have for n>> max (1, D)

*) “%(A+A2+~~-+A“)x—V,,(%(A+A2+---+A""’)x>

g”%(A+A2+---+A”)x +”(A——V)”(%(A+A2+---+A”"’)x)

<P .C-z|+ar- "=
T

and, since the set {V,,(l(A+A2+--~+A”"’)x)} (n> max (ng, p)) is
n
totally bounded (and consequently —;’—-bounded), so is the set

{% (A+A%+--+ A7) a;} ('n> max (ng, p)) e-bounded. Since the exclud-

ed points are finite in number and since ¢>0 is arbitrary, the set
{%(A+A2+---+A”)x} (n=1,2, ...) is totally bounded.

Thus we have proved the existence of A; and the strong con-
vergence to it. This is true also for A; with |2|=1. It will be easily
seen from (*) that A; is completely continuous. A; has clearly the
properties (ii)~(x) of Theorem 3.

In order to substitute the strong convergence by the uniform one,
let us proceed as follows: By a theorem of K. Yosida,” the proper
values of A do not accumulate to a point 2 with || =1. Hence the
proper values 2 of A with |A] =1 are finite in number, and if we
denote these by 2,22 -.-, 4, and consider the linear operator

A'=A— Z‘.l iA,, then there is a constant 6>>0 such that A’ has no
proper values A with |A|=1—46. Since there is a completely continuous
operator V'=V~—_Z'll,-A,i such that [A'—V'=4A—VI=a<<1l, we

have again from a theorem of K. Yosida,? that E— lA’ has an inverse

for |A]= max(l -39, —21— =1-—¢’, and therefore the series 2 Am
a

con-

verges for |1|=>1—¢. Hence there exists a constant M such that
A< M-(1-0) for n=1,2, ....
The rest of the proof will be easily carried out as in the preceding.

1) Lemma 1, loc. cit. (7).
2) Lemma 3, loc. cit. (7). This may also be proved directly.



