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(Comm. by T. TAKGI, .I..., Oct. 12, 1938.)

1o Introduction. In a recent paper C. Visser discussed the
iteration of linear operations in a Hilbert space and proved the follow-
ing theorems"

Theorem I. Let E be a Hilbert space and A a linear operator
which maps E in itself. If {A} (n=l, 2, ...) /s uniformly bounded,
then there exists a bounded linear operator A, which maps E in

itself, such that 1__ (A+A+... +A) converges weakly to A.
n

Theorem II. If in addition to the assumptions in Theorem I, A
is completely continuous, then the weak convergence in Theorem I may
be substituted by the strong convergence.

In Visser’s proof, the notion of inner product is indispensable, and
therefore it is not applicable to the case of general Banach spaces. It
is the purpose of the present paper to show that these theorems are
also valid in general complex Banach spaces. Moreover, we can show
that even in general complex Banach spaces the weak convergence in
Theorem I may be substituted by the strong one (Theorem 2)z) and
that the strong convergence in Theorem II by the uniform one (Theo-
rem 4). The former is a generalisation of J. v. Neumann’s Mean
Ergodic Theorem) and the latter is an analogue of M. Frchet’s theo-
rem ;) and following the same way, the results of N. Kryloff and N.
Bogoliofibo .are also generalised to the case of general complex Banach
spaces (Theorem 5).

The results of this paper are obtained in collaboration with K.
Yosida. Theorem 2 is obtained by him directly,* and Theorem 4 and
5 are also obtained by him in different ways.) I shall, however, give
the outline of my proof, since we can treat all these problems in a
unique way and since the method itself, I believe, is not without
interest. In concluding the introduction, I should like to express my
hearty thanks to K. Yosida for his kindness in the course of this work.

1) C. Visser On the iteration of linear operations in a Hilbert space, Proc. Acad.
Amsterdam, 41 (1938), 487-495.

2) This is an essential advance! This is proved by K. Yosida. See the foregoing
paper of K. Yosida- Mean Ergodic Theorem in Banach spaces.

3) J. v. Neumann: Proof of the quasi-ergodic hypothesis, Proc. Nat. Acad. U.S.A.
18 (1932), 70-82.

4) M. Frchet: Sur l’allure asymptotique de la suite des itrs d’un noyau de
Fredholm, Quart. Journ. of Math., 5 (1934), 106-144.

5) N. Kryloff et N. Bogoliofiboff Sur les probabilits en chahm, C. R., 204 (1937),
1386-1388.

6) See the paper of K. Yosida cited in (2).
7) See the foregoing paper of K. Yosida: Abstract integral equation and the

homogeneous stochastic process.
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Z. Let E be a complex Banach space and A a bounded linear
orator which maps E in itself. A is called to be
coo if it maps the unit sphere IIll 1 of E on a weakly compact
(in ) set of E.

Theorem 1. Let A be a weakly completdy continuous operator
which maps E in itself. If there is a constant C such that [[A[[ C
for n=l, 2, ..., then there exists a bounded linear operator A1, which
maps E in itself, such that

( i ) 1__ (A+A+ +A) converges weakly to A,

(ii) IIAII C,
(iii) AA AA A for n- 1, 2, ...,
(iv) A=A.
Proof. We may assume without the loss of generality that E is

separable, since otherwise we have only to consider, for any x e E, the
closed linear subspace E of E which is spanned by (A’x} (n= 1, 2, ...).)
Sinee --(A+A+.-- +A’) (= 1, ,...) is weakly eompaet for any

e E, we can ehoose (diagonal method !) a subsequenee {} (u 1, , ...)
of {} (=1,.,...) such that 1-!-(A+A+...+A")x (u=l,,...) eon-

verges weakly to a point of E at a countable subset which is dense

in E. Sinee --(A+A+--. +A’) is uniformly bounded, we ean see

from this that (A+A+ +A’) converges weakly to a lint (say

A) of E for any point of N; that is, 1--(A+A+...+A’) eon-

verges weakly to a linear operator A which maps N in itself.
hus the linear orator A is determined. We gave, however,

hitherto proved only that

(i)’ 1(A+A+ .-.-t-A) converges weakly to A,

and yet (i) is not proved. Before coming to the proof of (i), let us
consider the properties (ii), (iii) and (iv). (ii) is evident. In order to
prove (iii), multiply (i)’ by A from the left. Then we have"

1 (A._t_A+..._t_A,,,+I) converges weakly to AA.

Consequently, since

1-!- (A+A2+ +A,,)- 1 (A2+A3+ +

I(A-A..+9 <

1) It will be easily seen that A is a weakly completely continuous operator which
maps Ez in itself. (By a theorem of Banach-Mazur, Ez is also weakly closed !).
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we have (with (i)’) that AA--A. The relation AA--A may be
proved analogously. Hence (iii) is proved for nl, and the case for
general n follows from this directly. If we multiply (i)’ again by A
from the left, then we have"

1 (AaA/AaA/ /AaA%) converges weakly to A.

Since by (iii) AA*-A for n--l, 2, ..., the left hand side is equal to
A and hence (iv) is proved.

Now, in order to prove (i), assume that (i)is not tree. Then
there is a point x and a subsequence (m] (-1, 2, ...) of

(n-- 1, 2, ...) such that 1 (A/A+..-/A)x0 converges weakly to

0A Starting from this sequence (} (--1, 2, ...) and applying
the diagonal method again, we shall have a subsequence (n’}(v--1,2, ...)
of (m} (--1, 2, ...) and a bounded linear operator A, which maps E
in itself, such that

(i)" 1-- (A/A-[ /A%) eonverges weakly o A.

A satisfies he same vroperfies (ii), (iii) and (iv) as A, and A A
since A=A. If we now multiply (i)" by A from ehe left,
hen we have (using A.,4"=A) ha A--AA’. On he oher hand,
multiplying (iY by A from he right, we have A--AA, whieh leads
to a contradiction since A :k= A. Henee (i) mus be rue.

Theorem . The weak convergence in Theorem 1 may be substi-
tuted by the strong convergence.

Proof. Let the range of I-A (I is an identical transformation)
and of I-A be R and R respectively. It is clear that any point of
R is a weak limiting point of R,D and since R is a linear subspace,
it is also a strong limiting point of R.) Hence we have R.

Now, put =Ax+(x-Ax) for any x e E. Since A"Ax Ax for
n= 1, 2, and since -Axe Rx R, the proof will be completed if

we can prove that ]I-,(A+AZ+...+A’)(x-Ax)l]--O or, more gene-

rally, that for any y e/ we have __1 (A+Az +.-- +A")y -, 0. This is
n

clear if yeR; for, since y=x-Ax with xeE, we have
1__ (A+A"+...+A")y]I 1__ (A+AZ+... +A") (x-Ax) 1__ (A-

A"+) 0. If in general yeR, then for any :>0 there exists a

y* eR with [[y-y*ll<:e. For this y* we have"

1) Consider that I---"(A+A + +An)---(I-A)(nI+(n-1)A+(n-2)A’ +--. +An-a)n
converges weakly to I-At.

2) Theorem of Banach-Mazur.
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I(A+A,+ +A)y*

+ -(A+AZ+...+A’)(y-y*)

and since ,> 0 is arbitrary, we have -!-1 (A+A+ +A)y --* 0.
n

Theorem 3. Under the same assumptions as in Theorem 1 we
have" For any complex number with 1= 1 there exists a bounded
linear operator Aa, which maps E in itself, such that

(i) - +-( A A* + A’X, /) eonverges strongly to Aa,

(ii) ]]Aall=< C,
(iii) A*Aa AaA"-2*Aa for n= 1, 2, ...,
(iv) A]=A,
(v ) : implies A Au AaA O,
(vi) Aa -0 if and only if is a proper value of A.

If we further put A’ A-,aAa for any wih e (i-) and

Aa :k:: 0 (i= 1, 2, ..., p), then we have

(vii) AaA’=A’Aa=O for i=1,2, ...,p,

(viii) AA’ A’A A’,
A’" for n=l, 2, and here exists a con-(ix) A"=,2,A+ .,

i=1

stant C’ such that we have liA’*][ C’ for n= 1, 2, ...,
(x) is a proper value of A’ if and only if it is a proper value

of A and 2- for i=l, 2,...,p.
We omit the proof.
3. In this chapter we are concerned with completely continuous

operators. A linear transformation of a complex Banach space E in
itself is called to be completely continuous if it maps the unit sphere
IIll_<_l of E on a compact (in E) set of E.

Theorem . Le A be a completely continuous linea, operatrr
which maps E in itself. If there is a constan C such that [[A"[I < C
for n= 1, 2, ..., hen we have"

( ) For any complez number with 1 here exists a com-
.pletely continuous linear operator Aa, which maps E in itself, such that

I(A A A’) M--+-+.-.+- -A--<--n for n=l, 2,...,

where M is a constan$ which is independen of n. Moreover, A has
the properties (ii)-(x) of Theorem 3.

(ii) In order that. A converges uniformly to a zero operator, it
is necessary and suffizien hat, A has no proper values of absolute
value 1.

(iii) In order that A converges uniformly to a linear operator
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A0, it is necessary, and sufficient that A has a proper value 1 and
no proper values of absolute value 1.

In (ii) and (iii) if A converges uniformly, it is of the order of
geometrical progression ; that is, there are a positive number and a
constant M independent of n such that we have [[A’I[ <= M-(1-)" and
A AI! M. (1 ) respectively for n 1, 2,

Proof. By a theorem of F. Riesz) the proper values of a com-
pletely continuous linear operator do not accumulate to a point 2 0.
Hence the proper values 2 of A with 121 1 are finite in number, and
if we denote these by 2, , ..., 2 and consider the linear operator

A’=A-,A, then there is a constant >0 such that A’ has no

proper values with 121> 1-&) Consequently there is a constant M
such that IIA’’I! <= M-(1-)" for n= 1, 2, The rest of the proof

will now be almost obvious, if we consider Theorem 3 (especially
property (ix)).a)

We shall now proceed to the generalisation of a theorem of Kryloff
and Bogoliofiboff.

Theorem 5. Let A be a bounded linear operator which maps E
in itsdf. If there is a constant C such that IIAll <__ C for n= 1, 2,
and if there are an integer k and a completely continuous linear
operator V such that IIA- VII =al, then for any complex number
with 121--1 there exists a completely continuaus linear operator A,
which maps E in itself, such that

1 (A A--[ +...+ for n=l,2, ...,

where M is a constant which iz independent of n.
Moreover, all what we have obtained in Theorem 3 and is also

true for this case, except the fact that A’ is completely continuous.
Proof. It will be sufficient if we prove the case k= 1. We shall

prove first that 1__ (A/A/.-./A) converges strongly to a linear
n

operator A. For this purpose it will be sufficient if we can prove

{1 A’ } (n=12,.)istotal-that for anyxeEtheset -(A+ +...+A")x

ly bounded; for all what we have needed is the existence of a (weakly
or strongly) convergent subsequence. In order to prove the total
houndedness, let :>0 be an arbitrary positive number and consider
the linear operator V=A-(A V), where p is an integer such that

C- a". lixll <2-. V is completely continuous, since expanding the right

hand side the term A vanishes and there remain only those terms
which contain at least one V-factor. Take an no so large that

1) F. Riesz" Ober lineare Funktionalgleichungen, Acta Math., 41 (1918), 71-98.
2) Since (An} is uniformly bounded, A has no proper values a with a I> 1.
3) It will be easily seen that Aa and A are completely continuous.
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P C. [Ix <:-, then we have for n :> max (no, p)

(A+A’+...+A’)x + (A-V)" (A+A’+...+A"-’)

m n 3

and, since the set {V,(-(A+A+...+A’*-’)x)} (n:>max(no, p))is
totally bounded (and consequently -Y--bounded), so is the set

3

-(A+A’+-..+A’) (2> max (, i)) e-bounded. Sinee the exelud-

ed lin finite in number and since e2>0 is arbitrary, the-(A+A+.-. +A) ( 1, ,...) is otally und.

Thus we have prov the exisnce of A and the strong con-
vergence to i This is e al for A with =1. It will easily
n from (*) that A is completely continuous. A has clearly the
proi (ii)-(x) of Threm 3.

In order to substite the strong convergence by the unifom one,
let us proce follows" By a theorem of K. Yosida,D the pror
values of A do not accumula a int with []= 1. Hence the
pror values of A with [=1 are finite in numr, and if we
deno the by 21, 2, .--, 2 and consider the linear orator
A’=A-A, then there is a consent 0 such that A’ h no

pror values with 1-. Since there is a completely continuo

orator V’=V-A such that I[A’- ’l[ I[AVl[ al, we

have ain from a theorem of K. Yosida, that E-A’ an inve

for 11 max 1-, 1 1-’, and hefo the ri -, I
verg for 1-’. Hence the exis a consent M such that
ilA’"II M. (1-’)" for n= 1, 2,

The t of the prf 11 emily carried out as in the pring.

1) Lemm 1, loc. cir. (7).
2) Lemma 3, loc. cit (7). This may also be proved directly.


