# 35. Operator-theoretical Treatment of Markoff's Process, II. 

By Kôsaku Yosida.<br>Mathematical Institute, Osaka Imperial University. (Comm. by T. Takagi, m.i.a., May 12, 1939.)

§1. Let $P(x, E)$ denote the transition probability that the point $x$ of the interval $\Omega=(0,1)$ is transferred, by a simple Markoff's process, into the Borel set $E$ of $\Omega$ after the elapse of a unit time. It is naturally assumed that $P(x, E)$ is completely additive for Borel sets $E$ if $x$ is fixed and that $P(x, E)$ is Borel measurable in $x$ if $E$ is fixed. $P(x, E)$ defines a linear operator $P$ on the complex Banach space ( $\mathfrak{M}$ ) in $(\mathfrak{P})^{1)}$ :

$$
P \cdot f=g, \quad g(E)=\int_{\Omega} P(x, E) f(d x) .
$$

It is easy to see that the iterated operator $P^{n}$ is defined by the kernel $P^{(n)}(x, E)=\int_{\Omega} P^{(n-1)}(x, d y) P(y, E)\left(P^{(1)}(x, E)=P(x, E)\right)$. In the preceding note, ${ }^{2)}$ it is proved that the following condition ( $D$ ) implies the condition ( $K$ ): $\left\{\begin{array}{l}\text { there exist an integer } s \text { and positive constants } b, \eta(<1) \text { such } \\ \text { that, if mes }(E)<\eta, P^{(s)}(x, E)<1-b \text { uniformly in } x, E .\end{array}\right.$
(K) \{ there exist an integer $n$ and a completely continuous linear operator $V$ such that $\left\|P^{n}-V\right\|_{\mathfrak{R}}<1$.
The condition ( $K$ ) is more general than ( $D$ ), since there exists $P(x, E)$ which satisfies ( $K$ ) but not ( $D$ ). In [I] it is proved that, if $P(x, E)$ satisfies ( $D$ ), then
(B) $\left\{\begin{array}{l}\text { the proper values } \lambda \text { with modulus } 1 \text { of } P \text { are all roots of } \\ \text { unity. }\end{array}\right.$

Thus, combined with ( $K$ ), we were able to give an operator-theoretical treatment of the Markoff's process $P(x, E)$ under the condition ( $D$ ). (See [I].)

In the present note I intend to show that the condition ( $K$ ) im-

[^0]plies the property (B). Hence the results in [I] are, in essential, valid for the Markoff's process under the condition ( $K$ ).
§ 2. Let $P(x, E)$ satisfy the condition ( $K$ ). Then, ${ }^{1)}$ there exists completely continuous linear operators $P_{\lambda}$ such that
\[

\left\{$$
\begin{array}{l}
\lim _{n \rightarrow \infty}\left\|\frac{1}{n} \sum_{m=1}^{n}\left(\frac{P}{\lambda}\right)^{m}-P_{\lambda}\right\|_{\mathscr{R}}=0,  \tag{1}\\
P_{\lambda}^{2}=P_{\lambda}, \quad P P_{\lambda}=P_{\lambda} P=\lambda P_{\lambda} \quad(|\lambda|=1) .
\end{array}
$$\right.
\]

$P_{\lambda}$ is the projection operator which maps ( $\mathfrak{M}$ ) on the proper space (Eigenraum) of $P$ belonging to the proper value $\lambda$. Let $P_{\lambda}$ be defined by the kernel $P_{\lambda}(x, E)$. We have, by $P^{(m)}(x, E) \geqq 0$ and $P^{(m)}(x, \Omega) \equiv 1$,

$$
\begin{equation*}
P_{1}(x, E) \geqq 0, \quad P_{1}(x, \Omega) \equiv 1 \tag{2}
\end{equation*}
$$

Thus $P_{1} \neq 0$. Let $P \cdot f=f$, that is, $P_{1} \cdot f=f$. Then, by (2), we obtain $P_{1} \cdot \tilde{f}=\tilde{f}$, where $\tilde{f}(E)=$ the total variation of $f$ on $E$. As $P_{1}$ is completely continuous, the number of the linearly independent solutions of $P_{1} f=f$ is finite. Thus applying Kryloff-Bogoliouboff's arguments ${ }^{2}$ we obtain the

Lemma. There exist $f_{1}, f_{2}, \ldots, f_{k} \in(\mathfrak{M})$ with the properties :

$$
P \cdot f_{i}=f_{i}, \quad f_{i}(E) \geqq 0, \quad f_{i}\left(E_{i}\right)=1 \quad\left(E_{i} \cdot E_{j}=\text { void for } i \neq j\right),
$$

such that any $f$ satisfying $P \cdot f=f, f(E) \geqq 0, f(\Omega)=1$ is uniquely expressed as a linear combination $f(E)=\sum_{i=1}^{k} c_{i} f_{i}(E), \sum_{i=1}^{k} c_{i}=1, c_{i} \geqq 0$.

Hence, from $P P_{1}=P_{1}$ and (2), we obtain

$$
\left\{\begin{array}{l}
P_{1}(x, E)=\sum_{i=1}^{k} c_{i}(x) f_{i}(E),  \tag{3}\\
c_{i}(x) \text { measurable with } c_{i}(x) \geqq 0, \quad \sum_{i=1}^{k} c_{i}(x) \equiv 1
\end{array}\right.
$$

Let now $\lambda(|\lambda|=1)$ be a proper value of $P: P_{\lambda} \neq 0$. Let $P_{\lambda}$ be defined by the kernel $P_{\lambda}(x, E)$. From $P_{\lambda} P^{m}=\lambda^{m} P_{\lambda}$ we see that the proper value equations

$$
\begin{equation*}
\int_{g} P^{(m)}(x, d y) g(y)=\lambda^{m} g(x) \quad(m=1,2, \ldots) \tag{4}
\end{equation*}
$$

admit bounded measurable solution $g(x) \neq 0$. We may assume that

$$
\begin{equation*}
\|g\|_{M *}=\text { lowest upper bound }|g(x)|=1 \tag{5}
\end{equation*}
$$

Then we may prove that
there exists $x_{0} \in \Omega$ such that $\left|g\left(x_{0}\right)\right|=1$.

[^1]Proof of (6). From (4) and $P^{(m)}(x, E) \geqq 0, \quad P^{(m)}(x, \Omega) \equiv 1$, we obtain

$$
\begin{gathered}
|g(x)| \underset{|g(y)| \geq 1-\delta}{\leqq} \int_{|l|} P^{(m)}(x, d y)+(1-\delta) \int_{|g(y)|<1-\delta} P^{(m)}(x, d y)=1-\delta \int_{|g(y)|<1-\delta} P^{(m)}(x, d y), \\
(1>\delta>0) .
\end{gathered}
$$

Hence, by (1),

$$
\begin{equation*}
|g(x)| \leqq 1-\delta \int_{|g(y)|<1-\delta} P_{1}(x, d y) . \tag{7}
\end{equation*}
$$

Let $x^{\prime} \in \Omega$ be such that $\left|g\left(x^{\prime}\right)\right| \geqq 1-\delta \varepsilon(1>\varepsilon>0)$, then, by (7) and (3),

$$
\left\{\begin{array}{l}
\varepsilon \geqq P_{1}\left(x^{\prime}, E(\delta)\right)=\sum_{i=1}^{k} c_{i}\left(x^{\prime}\right) f_{i}\left(E_{i}-E_{i} \cdot E(\delta)\right) \\
E(\delta)=\underset{y}{E}\{|g(y)| \geqq 1-\delta\}
\end{array}\right.
$$

As $c_{i}(x) \geqq 0, \sum_{i=1}^{k} c_{i}(x) \equiv 1$ and $\varepsilon, \delta$ were arbitrary, we must have

$$
f_{i}\left(E_{i}-E_{i} \cdot E(0)\right)=0, \quad E(0)=\underset{y}{E}\{|g(y)|=1\}
$$

for a certain $i\left(=1\right.$ or 2 or $\ldots$ or $k$ ). Thus, by $f_{i}\left(E_{i}\right)=1, E(0)$ is not void. Q. E. D.

Next let $\left|g\left(x_{0}\right)\right|=1$. Then, by (4) and $P^{(m)}\left(x_{0}, \Omega\right)=1$, we have

$$
\begin{equation*}
\int_{\Omega} P^{(m)}\left(x_{0}, d y\right)\left\{1-\frac{g(y)}{\lambda^{m} g\left(x_{0}\right)}\right\}=0 . \quad(m=1,2, \ldots) \tag{8}
\end{equation*}
$$

Put $g(y) / \lambda^{m} g\left(x_{0}\right)=h^{(m)}(y)=h_{1}^{(m)}(y)+\sqrt{-1} h_{2}^{(m)}(y)$, where $h_{1}^{(m)}(y)$ the real part of $h^{(m)}(y)$. From (5) we have $\left|h^{(m)}(y)\right| \leqq 1$. Thus $h_{1}^{(m)}(y) \leqq 1$, and if $h_{1}^{(m)}(y)=1$ we must have $h^{(m)}(y)=1$ viz. $g(y)=\lambda^{m} g\left(x_{0}\right)$.

From (8) we have

$$
\begin{equation*}
\int_{\Omega} P^{(m)}\left(x_{0}, d y\right)\left(1-h_{1}^{(m)}(y)\right)=0 . \quad(m=1,2, \ldots) \tag{9}
\end{equation*}
$$

As $P^{(m)}\left(x_{0}, E\right) \geqq 0, P^{(m)}\left(x_{0}, \Omega\right)=1,1 \geqq h_{1}^{(m)}(y)$ we must have

$$
P^{(m)}\left(x_{0}, E(m)\right)=1, \quad E(m)=\underset{y}{E}\left\{g(y)=\lambda^{m} g\left(x_{0}\right)\right\}
$$

Hence, if
(10) $E(i) \cdot E(j) \neq$ void for a certain couple of integers $i, j$ with $i \neq j$, then $\lambda^{i-j}=1$, as was to be proved.

Now let (10) be not true. Then, by (1),

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} P^{(i)}\left(x_{0}, E(s)\right)=P_{1}\left(x_{0}, E(s)\right)=0
$$

for any s. Hence we would obtain $P_{1}\left(x_{0}, \sum_{s=1}^{\infty} E(s)\right)=\sum_{s=1}^{\infty} P_{1}\left(x_{0}, E(s)\right)=0$. This is a contradiction, since, by (9) and (1),

$$
\begin{aligned}
P_{1}\left(x_{0}, \sum_{s=1}^{\infty} E(s)\right) & =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} P^{(i)}\left(x_{0}, \sum_{s=1}^{\infty} E(s)\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} P^{(i)}\left(x_{0}, E(i)\right)=1 .
\end{aligned}
$$


[^0]:    1) $(\mathfrak{R})$ is the linear space of all the totally additive set functions defined for all the Borel sets of $\Omega$. For any $f \in(\mathfrak{R})$ we define its norm $\|f\|_{\mathfrak{R}}$ by the total variation of $f$ on $\Omega$.
    2) K. Yosida: Operator-theoretical Treatment of the Markoff's Process, Proc. 14 (1938), 363. This note will be referred to as [I] below. It contains many misprints. On page 364, line 27 and line $28(\mathbb{R})$ is to be read ( $M^{*}$ ). On page 364, line $28 h(d z)$ is to be read $h(z)$. On page 365 , line 7 " $f_{i_{k}}(E) \cdot f_{j_{k}}(E) \equiv 0$ for $i \neq j$ " is to be read " $f_{i_{k}}\left(E_{i_{k}}\right)=1$ where $E_{i_{k}} \cdot E_{j_{k}}=$ void for $i \neq j$." On page 367, line 4 and 5 "From... by (6)" is to be read "Evident from iii) and the equations $f_{(i+1)_{a}}(E)=\int_{0}^{1} P(x, E) f_{i_{a}}(d x)$ below."
[^1]:    1) K. Yosida: Abstract Integral Equations and the Homogeneous Stochastic Process, Proc. 14 (1938), 286. K. Yosida: Quasi-completely-continuous Linear Functional Operations, to appear soon in Jap. J. Math. Cf, also S. Kakutani : Iteration of Linear Operations in Complex Banach Spaces, Proc. 14 (1938), 292.
    2) [I], Lemma 4.
