35. Operator-theoretical Treatment of Markoff's Process, II.

By Kôsaku Yosida.

Mathematical Institute, Osaka Imperial University. (Comm. by T. TAKAGI, M.I.A., May 12, 1939.)

§ 1. Let P(x, E) denote the transition probability that the point x of the interval $\mathcal{Q} = (0, 1)$ is transferred, by a simple Markoff's process, into the Borel set E of \mathcal{Q} after the elapse of a unit time. It is naturally assumed that P(x, E) is completely additive for Borel sets E if x is fixed and that P(x, E) is Borel measurable in x if E is fixed. P(x, E) defines a linear operator P on the complex Banach space (\mathfrak{M}) in $(\mathfrak{M})^{1}$:

$$P \cdot f = g$$
, $g(E) = \int_{\mathcal{G}} P(x, E) f(dx)$.

It is easy to see that the iterated operator P^n is defined by the kernel $P^{(n)}(x, E) = \int_{\mathcal{Q}} P^{(n-1)}(x, dy) P(y, E) \left(P^{(1)}(x, E) = P(x, E)\right)$. In the preceding note,²⁾ it is proved that the following condition (D) implies the condition (K):

- (D) { there exist an integer s and positive constants b, η (<1) such that, if mes $(E) < \eta$, $P^{(s)}(x, E) < 1-b$ uniformly in x, E.
- (K) { there exist an integer *n* and a completely continuous linear operator *V* such that $||P^n V||_{\mathfrak{M}} < 1$.

The condition (K) is more general than (D), since there exists P(x, E) which satisfies (K) but not (D). In [I] it is proved that, if P(x, E) satisfies (D), then

(B) { the proper values λ with modulus 1 of P are all roots of unity.

Thus, combined with (K), we were able to give an operator-theoretical treatment of the Markoff's process P(x, E) under the condition (D). (See [I].)

In the present note I intend to show that the condition (K) im-

¹⁾ (\mathfrak{M}) is the linear space of all the totally additive set functions defined for all the Borel sets of \mathcal{Q} . For any $f \in (\mathfrak{M})$ we define its norm $||f||_{\mathfrak{M}}$ by the total variation of f on \mathcal{Q} .

²⁾ K. Yosida: Operator-theoretical Treatment of the Markoff's Process, Proc. 14 (1938), 363. This note will be referred to as [I] below. It contains many misprints. On page 364, line 27 and line 28 (\mathfrak{M}) is to be read (M^*). On page 364, line 28 h(dz) is to be read h(z). On page 365, line 7 " $f_{i_k}(E) \cdot f_{j_k}(E) \equiv 0$ for $i \neq j$ " is to be read " $f_{i_k}(E_{i_k}) = 1$ where $E_{i_k} \cdot E_{j_k} = \text{void}$ for $i \neq j$." On page 367, line 4 and 5 "From... by (6)" is to be read "Evident from iii) and the equations $f_{(i+1)_a}(E) = \int_0^1 P(x, E) f_{i_a}(dx)$ below."

plies the property (B). Hence the results in [1] are, in essential, valid for the Markoff's process under the condition (K).

§ 2. Let P(x, E) satisfy the condition (K). Then,¹⁾ there exists completely continuous linear operators P_{λ} such that

(1)
$$\begin{cases} \lim_{n \to \infty} \left\| \frac{1}{n} \sum_{m=1}^{n} \left(\frac{P}{\lambda} \right)^{m} - P_{\lambda} \right\|_{\mathfrak{M}} = 0, \\ P_{\lambda}^{2} = P_{\lambda}, \quad PP_{\lambda} = P_{\lambda}P = \lambda P_{\lambda} \quad (|\lambda| = 1). \end{cases}$$

 P_{λ} is the projection operator which maps (\mathfrak{M}) on the proper space (Eigenraum) of P belonging to the proper value λ . Let P_{λ} be defined by the kernel $P_{\lambda}(x, E)$. We have, by $P^{(m)}(x, E) \geq 0$ and $P^{(m)}(x, \mathcal{Q}) \equiv 1$,

(2)
$$P_1(x, E) \geq 0$$
, $P_1(x, Q) \equiv 1$.

Thus $P_1 \neq 0$. Let $P \cdot f = f$, that is, $P_1 \cdot f = f$. Then, by (2), we obtain $P_1 \cdot \tilde{f} = \tilde{f}$, where $\tilde{f}(E)$ = the total variation of f on E. As P_1 is completely continuous, the number of the linearly independent solutions of $P_1 \cdot f = f$ is finite. Thus applying Kryloff-Bogoliouboff's arguments²⁾ we obtain the

Lemma. There exist $f_1, f_2, \ldots, f_k \in (\mathfrak{M})$ with the properties:

$$P \cdot f_i = f_i$$
, $f_i(E) \ge 0$, $f_i(E_i) = 1$ $(E_i \cdot E_j = \text{void for } i \ne j)$,

such that any f satisfying $P \cdot f = f$, $f(E) \ge 0$, $f(\mathcal{Q}) = 1$ is uniquely expressed as a linear combination $f(E) = \sum_{i=1}^{k} c_i f_i(E)$, $\sum_{i=1}^{k} c_i = 1$, $c_i \ge 0$.

Hence, from $PP_1 = P_1$ and (2), we obtain

(3)
$$\begin{cases} P_1(x, E) = \sum_{i=1}^k c_i(x) f_i(E) ,\\ c_i(x) \text{ measurable with } c_i(x) \ge 0 , \quad \sum_{i=1}^k c_i(x) \ge 1 . \end{cases}$$

Let now $\lambda(|\lambda|=1)$ be a proper value of $P: P_{\lambda} \neq 0$. Let P_{λ} be defined by the kernel $P_{\lambda}(x, E)$. From $P_{\lambda}P^{m} = \lambda^{m}P_{\lambda}$ we see that the proper value equations

(4)
$$\int_{g} P^{(m)}(x, dy) g(y) = \lambda^{m} g(x) \qquad (m = 1, 2, ...)$$

admit bounded measurable solution $g(x) \neq 0$. We may assume that

(5)
$$g = 1$$
 lowest upper bound $g(x) = 1$.

Then we may prove that

(6) there exists
$$x_0 \in \Omega$$
 such that $|g(x_0)| = 1$.

2) [I], Lemma 4.

¹⁾ K. Yosida: Abstract Integral Equations and the Homogeneous Stochastic Process, Proc. 14 (1938), 286. K. Yosida: Quasi-completely-continuous Linear Functional Operations, to appear soon in Jap. J. Math. Cf, also S. Kakutani: Iteration of Linear Operations in Complex Banach Spaces, Proc. 14 (1938), 292.

No. 5.] Operator-theoretical Treatment of Markoff's Process, II.

Proof of (6). From (4) and $P^{(m)}(x, E) \ge 0$, $P^{(m)}(x, Q) \equiv 1$, we obtain

$$|g(x)| \leq \int_{|g(y)| \geq 1-\delta} P^{(m)}(x, dy) + (1-\delta) \int_{|g(y)| < 1-\delta} P^{(m)}(x, dy) = 1-\delta \int_{|g(y)| < 1-\delta} P^{(m)}(x, dy),$$

$$(1 > \delta > 0).$$

Hence, by (1),

(7)
$$|g(x)| \leq 1 - \delta \int_{|g(y)| < 1-\delta} P_1(x, dy).$$

Let $x' \in \mathcal{Q}$ be such that $|g(x')| \ge 1 - \delta \varepsilon$ (1 > ε > 0), then, by (7) and (3),

$$\begin{cases} \varepsilon \ge P_1(x', E(\delta)) = \sum_{i=1}^k c_i(x') f_i(E_i - E_i \cdot E(\delta)), \\ E(\delta) = E_y \{ | g(y) | \ge 1 - \delta \}. \end{cases}$$

As $c_i(x) \ge 0$, $\sum_{i=1}^k c_i(x) \equiv 1$ and ϵ, δ were arbitrary, we must have

$$f_i(E_i - E_i \cdot E(0)) = 0$$
, $E(0) = E_y \{|g(y)| = 1\}$

for a certain i (=1 or 2 or ... or k). Thus, by $f_i(E_i)=1$, E(0) is not void. Q. E. D.

Next let $|g(x_0)|=1$. Then, by (4) and $P^{(m)}(x_0, \mathcal{Q})=1$, we have

(8)
$$\int_{g} P^{(m)}(x_0, dy) \left\{ 1 - \frac{g(y)}{\lambda^m g(x_0)} \right\} = 0. \quad (m = 1, 2, ...)$$

Put $g(y)/\lambda^m g(x_0) = h^{(m)}(y) = h_1^{(m)}(y) + \sqrt{-1} h_2^{(m)}(y)$, where $h_1^{(m)}(y)$ the real part of $h^{(m)}(y)$. From (5) we have $|h^{(m)}(y)| \leq 1$. Thus $h_1^{(m)}(y) \leq 1$, and if $h_1^{(m)}(y) = 1$ we must have $h^{(m)}(y) = 1$ viz. $g(y) = \lambda^m g(x_0)$.

From (8) we have

(9)
$$\int_{\mathcal{Q}} P^{(m)}(x_0, dy) \left(1 - h_1^{(m)}(y) \right) = 0 . \qquad (m = 1, 2, ...)$$

As $P^{(m)}(x_0, E) \ge 0$, $P^{(m)}(x_0, Q) = 1$, $1 \ge h_1^{(m)}(y)$ we must have

$$P^{(m)}(x_0, E(m)) = 1$$
, $E(m) = E_y \{g(y) = \lambda^m g(x_0)\}$.

Hence, if

(10) $E(i) \cdot E(j) \neq \text{void for a certain couple of integers } i, j \text{ with } i \neq j$,

then $\lambda^{i-j}=1$, as was to be proved.

Now let (10) be not true. Then, by (1),

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^{n}P^{(i)}(x_0,E(s)) = P_1(x_0,E(s)) = 0$$

129

for any s. Hence we would obtain $P_1(x_0, \sum_{s=1}^{\infty} E(s)) = \sum_{s=1}^{\infty} P_1(x_0, E(s)) = 0$. This is a contradiction, since, by (9) and (1),

$$P_1(x_0, \sum_{s=1}^{\infty} E(s)) = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n P^{(i)}(x_0, \sum_{s=1}^{\infty} E(s))$$
$$= \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n P^{(i)}(x_0, E(i)) = 1.$$