PAPERS COMMUNICATED

62. A Proof of a Theorem of Hardy and Littlewood Concerning Strong Summability of Fourier Series.

By Tatsuo KAWATA.

Mathematical Institute, Tohoku Imperial University, Sendai. (Comm. by M. FUJIWARA, M.I.A., Oct. 12, 1939.)

1. Let f(x) be integrable and periodic with period 2π and let its Fourier series be

(1)
$$f(x) \sim \frac{1}{2} a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$
.

If $f(x) \in L_p$ (p > 1), then (1) is strongly summable for any positive index at a Lebesgue set, that is:

(2)
$$\sum_{\nu=0}^{n} |s_{\nu}(x) - f(x)|^{k} = o(n),$$

for every k > 0, where s_{ν} is the partial sums of (1). If f(x) is merely integrable (2) does not necessarily hold at the Lebesgue set.¹⁾ Professors G. H. Hardy and J. E. Littlewood proved, however, the following theorem.²⁾

Theorem. If

(3)
$$\int_0^t |\phi(u)| \, du = o(t) \, ,$$

then

(4)
$$\sum_{\nu=0}^{n} |s_{\nu}(x) - f(x)|^{2} = o(n \log n),$$

where

(5)
$$\phi(u) = \frac{1}{2} \left\{ f(x+u) + f(x-u) - 2f(x) \right\}.$$

They proved this theorem by power series method. The object of this paper is to give an elementary proof.

2. We make the ordinary simplifications. Suppose that f(t) is even and x=0, f(0)=0, so that $\phi(u)=f(u)$. Thus we shall prove, under the condition

(6)
$$\int_{0}^{t} |f(u)| \, du = \Phi(t) = o(t) \, ,$$

that

(7)
$$\sum_{\nu=0}^{n} s_{\nu}^{2} = o(n \log n).$$

1) This is due to Hardy and Littlewood, The strong summability of Fourier series, Fund. Math., 25 (1935), 162-189.

²⁾ Hardy-Littlewood, loc. cit. It is unsolved, however, whether (2) holds almost everywhere.

We first note that under (6)

(8)
$$\int_{1/n}^{\pi} \frac{|f(t)|}{t} dt = o(\log n),$$

(9)
$$\int_{1/n}^{\pi} \frac{|f(t)|}{t^2} dt = o(n)$$

which are easily obtained by integration by parts. Now we have

(10)
$$\sum_{\nu=0}^{n} s_{\nu}^{2} = \sum_{\nu=0}^{n} \frac{1}{\pi^{2}} \int_{0}^{\pi} f(t) \frac{\sin \nu t}{t} dt \int_{0}^{\pi} f(u) \frac{\sin \nu u}{u} du + o(n)$$
$$= \frac{1}{\pi^{2}} \int_{0}^{\pi} \frac{f(t)}{t} dt \int_{0}^{\pi} \frac{f(u)}{u} \sum_{\nu=1}^{n} \sin \nu t \sin \nu u + o(n)$$
$$= \int_{0}^{1/n} \int_{0}^{1/n} + \int_{0}^{1/n} \int_{1/n}^{\pi} + \int_{1/n}^{\pi} \int_{0}^{1/n} + \int_{1/n}^{\pi} \int_{1/n}^{\pi} + o(n)$$
$$= J_{1} + J_{2} + J_{3} + J_{4} + o(n) ,$$

say. We have

(11)
$$|J_1| \leq \frac{1}{\pi^2} \int_0^{1/n} |f(t)| dt \int_0^{1/n} |f(u)| \sum_{\nu=1}^n \nu^2 = o(n),$$
$$|J_2| \leq \frac{1}{\pi^2} \int_0^{1/n} |f(t)| dt \int_{1/n}^\pi \frac{|f(u)|}{u} \sum_{\nu=1}^n \nu du$$

which is, by (6) and (8), less than

(12)
$$\frac{n^2}{\pi^2} \int_0^{1/n} |f(t)| dt \int_{1/n}^{\pi} \frac{|f(u)|}{u} du$$
$$= o(n \log n).$$

Similarly we have

(13) $|J_3| = o(n \log n)$.

Next we write J_4 as

$$(14) \qquad J_{4} = \frac{1}{2\pi^{2}} \int_{1/n}^{\pi} \frac{f(t)}{t} dt \int_{1/n}^{\pi} \frac{f(u)}{u} \sum_{\nu=1}^{n} \left(\cos \nu (u-t) - \cos \nu (u+t) \right) du \\ = \frac{1}{2\pi^{2}} \int_{1/n}^{\pi} \frac{f(t)}{t} dt \int_{1/n}^{\pi} \frac{f(u)}{u} \left(\frac{\sin n (u-t)}{u-t} - \frac{\sin n (u+t)}{u+t} \right) du + o (\log^{2} n) \\ = \frac{1}{2\pi^{2}} \int_{1/n}^{\pi/2} \frac{f(t)}{t} dt \int_{1/n}^{\pi} \frac{f(u)}{u} \frac{\sin n (u-t)}{u-t} du \\ + \frac{1}{2\pi^{2}} \int_{\pi/2}^{\pi} \frac{f(t)}{t} dt \int_{1/n}^{\pi} \frac{f(u)}{u} \frac{\sin n (u-t)}{u-t} du \\ - \frac{1}{2\pi^{2}} \int_{1/n}^{\pi} \frac{f(t)}{t} dt \int_{1/n}^{\pi} \frac{f(u)}{u} \frac{\sin n (u-t)}{u-t} du \\ = J_{4,1} + J_{4,2} - J_{4,3} + o (\log^{2} n) ,$$

No. 8.] A Proof of a Theorem of Hardy and Littlewood.

say. Clearly we have, by (8),

(15)
$$J_{4,2} = O\left(n \int_{\pi/2}^{\pi} \frac{|f(t)|}{t} dt \int_{1/n}^{\pi} \frac{|f(u)|}{u} du\right) = o(n \log n).$$

We divide $J_{4,1}$ as follows:

(16)
$$J_{4,1} = \frac{1}{2\pi^2} \int_{1/n}^{\pi/2} \int_{|u-t| < 1/2n}^{\pi/2} \frac{1}{2\pi^2} \int_{1/n}^{\pi/2} \int_{|u-t| \le 1/2n}^{\pi/2},$$

the first term of which is, in the absolut value, less than

$$n\int_{1/n}^{\pi/2} \frac{|f(t)|}{t} dt \int_{|u-t| < 1/2n} \frac{|f(u)|}{u} du$$
$$= n\int_{1/n}^{\pi/2} \frac{|f(t)|}{t} dt \int_{t-1/2n}^{t+1/2n} \frac{|f(u)|}{u} du.$$

This does not exceed, using integration by parts in the inner integral,

$$n \int_{1/n}^{\pi/2} \frac{|f(t)|}{t} \left\{ \frac{\varphi(t+1/2n)}{t+1/2n} - \frac{\varphi(t-1/2n)}{t-1/2n} \right\} dt$$

+ $n \int_{1/n}^{\pi/2} \frac{|f(t)|}{t} dt \int_{t-1/2n}^{t+1/2n} \frac{\varphi(u)}{u^2} du$
= $o(n \log n) + n \int_{1/n}^{\pi/2} \frac{|f(t)|}{t} \log \frac{t+1/2n}{t-1/2n} dt$
= $o(n \log n) + O\left(n \int_{1/n}^{\pi/2} \frac{|f(t)|}{t} \frac{1}{t-1/2n} \cdot \frac{1}{n} dt\right)$
= $o(n \log n)$.

The second integral of the right hand side of (16) is, in the absolute value, less than

(17)
$$\frac{1}{2\pi^2} \int_{1/n}^{\pi/2} \frac{|f(t)|}{t} dt \int_{t+1/2n}^{\pi} \frac{|f(u)|}{u(u-t)} du + \frac{1}{2\pi^2} \int_{3/2n}^{\pi/2} \frac{|f(t)|}{t} dt \int_{1/n}^{t-1/2n} \frac{|f(u)|}{u(u-t)} du,$$

the first term of which is, by integration by parts and (8),

$$\leq \frac{1}{2\pi^2} \int_{1/n}^{\pi/2} \frac{|f(t)|}{t} \left[\frac{\varphi(u)}{u(u-t)} \right]_{t+1/2n}^{\pi} dt + \frac{1}{2\pi^2} \int_{1/n}^{\pi/2} \frac{|f(t)|}{t} dt \int_{t+1/2n}^{\pi} \frac{\varphi(u)(2u-t)}{u^2(u-t)^2} du$$

$$\leq \frac{\varphi(\pi)}{2\pi^3} \int_{1/n}^{\pi/2} \frac{|f(t)|}{t(\pi-t)} dt + o\left(n \int_{1/n}^{\pi/2} \frac{|f(t)|}{t} dt\right) + o\left(\int_{1/n}^{\pi/2} \frac{|f(t)|}{t} dt \int_{t+1/2n}^{\pi} \frac{du}{(u-t)^2}\right)$$

$$= o(\log n) + o(n \log n) + o\left(n \int_{1/n}^{\pi/2} \frac{|f(t)|}{t} dt\right)$$

$$= o(n \log n) .$$

Similarly we can prove that the second term of (17) is also $o(n \log n)$. Thus we get

(18)
$$J_{4,1} = o(n \log n)$$
.

Lastly we shall estimate $J_{4,3}$.

(19)
$$|J_{4,3}| \leq \frac{1}{2\pi^2} \int_{1/n}^{\pi/2} \frac{|f(t)|}{t} dt \int_{1/n}^{\pi} \frac{|f(u)|}{u} \frac{du}{u+t}$$
$$\leq \frac{1}{2\pi^2} \int_{1/n}^{\pi/2} \frac{|f(t)|}{t} dt \int_{1/n}^{\pi} \frac{|f(u)|}{u^2} du$$
$$= o(n \log n),$$

by (9).

Combining (14), (15), (18) and (19) we have

$$J_4 = o(n \log n).$$

Thus by (11), (12), (13) and (20) the proof is complete.