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1. Let f(z) be integrable and periodic with period 2 and let its
Fourier series be

1 a0/, (a cos n/b sin nx).(1) f() -If f(z)eL (p > 1), then (1) is strongly summable for any positive
index at a Lebesgue set, that is:

(2)

for every k 3> 0, where s, is the partial sums of (1). If f(z) is merely
integrable (2)does no necessarily hold at the Lebegue set.> Pro-
lessors G.H. Hardy and J.E. Littlewood proved, however, the follow-
ing theorem?>

Theorem. If

jl (u)Idu=o(t),(3)

then

(4) , s(z)-f(z)I- o(n log n),

where

(5) 1(u)=- (f(x-t-u)+f(x-u) 2f(:r,)}

They proved this theorem by power series method. The object of
this paper is to give an elementary proof.

2. We make the ordinary simplificationa Suppose that f(t)is
even and x=O, f(O)=O, so that (u)=f(u). Thus we shall prove, under
the condition

(6)

that

(7)

Io If(u) du=(t)=o(t),

] o (n log n).

1) This is due to Hardy and Littlewood, The strong summability of Fourier
series, Fund. Math., 25 (1935), 162-189.

2) Hardy-Littlewood, loc. cit. It is unsolved, however, whether (2) holds almost
everywhere.
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We first note that under (6)

(8)

(9) I If(t) dt=o(n)

which are easily obtained by integration by parts.
Now we have

" " 1I sin(10) ’-o ]-o- f(t)
t

dt
u

du+o (n)

1 I’f(t) If(u)-- o t
.dr

o u -sin t sin + (n)

J+J2+4+J+o(n),
say. We have

J If(t) ldt E rdu141

wch is, by (6) and (8), ls than

02)

=o(log).
Similarly e have

Next we wri Y-as

(la)

I f: (1 f(t) dt i(u) sin.(u-t)

sin

1 f:i. f(t) dtf: f(u) sin n (u-t) du

1 = f(t) dtf= f(u) sinn(u-t) du

1
2 al t u u+t
Ji, +Ji, Ji, + o (log n)
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say. Clearly we have, by (8),

(15) J..=O(nl f(t) dtl If(u) du)=o(n logn)

We divide J. as follows-

(16) 4,1---- Jll- I--tl < 1/2- 21rt all. lu-ti < 112-

the first term of which is, in the absolut value, less than

["/’ If(t)n dt
Sll. t lu-tl < 119..

This does not exceed, using integration by parts in the inner integral,

+" @(u)+ f./2 If(t) dt duno1/. t t-112, it2

o (n log n) "/" If(t) logJrt11. t

-o ( f=’ If(OI(n log n)+0
t

o (n log n).

t+ l12n dt
t-ll2n

1 .ldt)t- 1/2n n

The second integral of the right hand side of (16) is, in the absolute
value, less than

(:7) 1 (:/’ If(OI dtI: If(u) du
2 /= t t+1/2, u(it- t)

1 "/ If(t) dtf’-’/= If(u)! du,+--o3/2. t Jll. u(u-- t)

the first term of which is, by integration by parts and (8),

: If(OI [ T at+ 1 r=i. If(t,)idt[= (u)(2u-t) du

() [.i2 If(OI dt+ +
23

Jlln t(-- t) Xdl/n t Oxdl/n t dt+ll2n (- t)2
)
/

(log n) +o (n log n)+o n -dt
/n t

=o(n log n).
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Similarly we can prove that the second term of (17) is also o( log n).
Thus we get

(18) J’,.,= o (n log n).

Lastly we shall estimate J.

(19) [j.,,.l< 1 I/2 If()l dI If()l

o (n log ),
by (9).

mbining (14), (15), (18) and (19) we have

If(u) du
u2

(20) jr o (n log n).

Thus by (11), (12), (13) and (20) the proof is complete.


