PAPERS COMMUNICATED

62. A Proof of a Theorem of Hardy and Littlewood Concerning Strong Summability of Fourier Series.

By Tatsuo Kawata.

Mathematical Institute, Tohoku Imperial University, Sendai.
(Comm. by M. Fujiwara, m.I.A., Oct. 12, 1939.)

1. Let $f(x)$ be integrable and periodic with period 2π and let its Fourier series be

$$
\begin{equation*}
f(x) \sim \frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \tag{1}
\end{equation*}
$$

If $f(x) \in L_{p}(p>1)$, then (1) is strongly summable for any positive index at a Lebesgue set, that is:

$$
\begin{equation*}
\sum_{\nu=0}^{n}\left|s_{\nu}(x)-f(x)\right|^{k}=o(n) \tag{2}
\end{equation*}
$$

for every $k>0$, where s_{ν} is the partial sums of (1). If $f(x)$ is merely integrable (2) does not necessarily hold at the Lebesgue set. ${ }^{1)}$ Professors G. H. Hardy and J. E. Littlewood proved, however, the following theorem. ${ }^{2)}$

Theorem. If

$$
\begin{equation*}
\int_{0}^{t}|\phi(u)| d u=o(t) \tag{3}
\end{equation*}
$$

then

$$
\begin{equation*}
\sum_{\nu=0}^{n}\left|s_{\nu}(x)-f(x)\right|^{2}=o(n \log n), \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi(u)=\frac{1}{2}\{f(x+u)+f(x-u)-2 f(x)\} . \tag{5}
\end{equation*}
$$

They proved this theorem by power series method. The object of this paper is to give an elementary proof.
2. We make the ordinary simplifications. Suppose that $f(t)$ is even and $x=0, f(0)=0$, so that $\phi(u)=f(u)$. Thus we shall prove, under the condition

$$
\begin{equation*}
\int_{0}^{t}|f(u)| d u=\Phi(t)=o(t) \tag{6}
\end{equation*}
$$

that

$$
\begin{equation*}
\sum_{\nu=0}^{n} s_{\nu}^{2}=o(n \log n) \tag{7}
\end{equation*}
$$

[^0]We first note that under (6)

$$
\begin{align*}
& \int_{1 / n}^{\pi} \frac{|f(t)|}{t} d t=o(\log n) \tag{8}\\
& \int_{1 / n}^{\pi} \frac{|f(t)|}{t^{2}} d t=o(n)
\end{align*}
$$

which are easily obtained by integration by parts.
Now we have

$$
\begin{align*}
\sum_{\nu=0}^{n} s_{\nu}^{2} & =\sum_{\nu=0}^{n} \frac{1}{\pi^{2}} \int_{0}^{\pi} f(t) \frac{\sin \nu t}{t} d t \int_{0}^{\pi} f(u) \frac{\sin \nu u}{u} d u+o(n) \tag{10}\\
& =\frac{1}{\pi^{2}} \int_{0}^{\pi} \frac{f(t)}{t} d t \int_{0}^{\pi} \frac{f(u)}{u} \sum_{\nu=1}^{n} \sin \nu t \sin \nu u+o(n) \\
& =\int_{0}^{1 / n} \int_{0}^{1 / n}+\int_{0}^{1 / n} \int_{1 / n}^{\pi}+\int_{1 / n}^{\pi} \int_{0}^{1 / n}+\int_{1 / n}^{\pi} \int_{1 / n}^{\pi}+o(n) \\
& =J_{1}+J_{2}+J_{3}+J_{4}+o(n)
\end{align*}
$$

say. We have

$$
\begin{align*}
& \left|J_{1}\right| \leqq \frac{1}{\pi^{2}} \int_{0}^{1 / n}|f(t)| d t \int_{0}^{1 / n}|f(u)| \sum_{\nu=1}^{n} \nu^{2}=o(n), \tag{11}\\
& \left|J_{2}\right| \leqq \frac{1}{\pi^{2}} \int_{0}^{1 / n}|f(t)| d t \int_{1 / n}^{\pi} \frac{|f(u)|}{u} \sum_{\nu=1}^{n} \nu d u
\end{align*}
$$

which is, by (6) and (8), less than

$$
\begin{align*}
& \frac{n^{2}}{\pi^{2}} \int_{0}^{1 / n}|f(t)| d t \int_{1 / n}^{\pi} \frac{|f(u)|}{u} d u \tag{12}\\
& =o(n \log n)
\end{align*}
$$

Similarly we have

$$
\begin{equation*}
\left|J_{3}\right|=o(n \log n) \tag{13}
\end{equation*}
$$

Next we write J_{4} as

$$
\begin{align*}
& J_{4}= \frac{1}{2 \pi^{2}} \int_{1 / n}^{\pi} \frac{f(t)}{t} d t \int_{1 / n}^{\pi} \frac{f(u)}{u} \sum_{\nu=1}^{n}(\cos \nu(u-t)-\cos \nu(u+t)) d u \tag{14}\\
&= \frac{1}{2 \pi^{2}} \int_{1 / n}^{\pi} \frac{f(t)}{t} d t \int_{1 / n}^{\pi} \frac{f(u)}{u}\left(\frac{\sin n(u-t)}{u-t}\right. \\
&\left.\quad-\frac{\sin n(u+t)}{u+t}\right) d u+o\left(\log ^{2} n\right) \\
&= \frac{1}{2 \pi^{2}} \int_{1 / n}^{\pi / 2} \frac{f(t)}{t} d t \int_{1 / n}^{\pi} \frac{f(u)}{u} \frac{\sin n(u-t)}{u-t} d u \\
&+\frac{1}{2 \pi^{2}} \int_{\pi / 2}^{\pi} \frac{f(t)}{t} d t \int_{1 / n}^{\pi} \frac{f(u)}{u} \frac{\sin n(u-t)}{u-t} d u \\
&- \frac{1}{2 \pi^{2}} \int_{1 / n}^{\pi} \frac{f(t)}{t} d t \int_{1 / n}^{\pi} \frac{f(u)}{u} \frac{\sin n(u+t)}{u+t} d u+o\left(\log ^{2} n\right) \\
&= J_{4,1}+J_{4,2}-J_{4,3}+o\left(\log ^{2} n\right),
\end{align*}
$$

say. Clearly we have, by (8),

$$
\begin{equation*}
J_{4,2}=O\left(n \int_{\pi / 2}^{\pi} \frac{|f(t)|}{t} d t \int_{1 / n}^{\pi} \frac{|f(u)|}{u} d u\right)=o(n \log n) . \tag{15}
\end{equation*}
$$

We divide $J_{4,1}$ as follows:

$$
\begin{equation*}
J_{4,1}=\frac{1}{2 \pi^{2}} \int_{1 / n}^{\pi / 2} \int_{|u-t|<1 / 2 n}+\frac{1}{2 \pi^{2}} \int_{1 / n}^{\pi / 2} \int_{|u-t| \leq 1 / 2 n}, \tag{16}
\end{equation*}
$$

the first term of which is, in the absolut value, less than

$$
\begin{aligned}
& n \int_{1 / n}^{\pi / 2} \frac{t}{\pi}(t)| | d t \int_{|u-t|<1 / 2 n} \frac{|f(u)|}{u} d u \\
& =n \int_{1 / n}^{\pi / 2} \frac{|f(t)|}{t} d t \int_{t-1 / 2 n}^{t+1 / 2 n}|f(u)|
\end{aligned}
$$

This does not exceed, using integration by parts in the inner integral,

$$
\begin{aligned}
& n \int_{1 / n}^{\pi / 2} \frac{|f(t)|}{t}\left\{\frac{\Phi(t+1 / 2 n)}{t+1 / 2 n}-\frac{\Phi(t-1 / 2 n)}{t-1 / 2 n}\right\} d t \\
& +n \int_{1 / n}^{\pi / 2} \frac{|f(t)|}{t} d t \int_{t-1 / 2 n}^{t+1 / 2 n} \frac{\Phi(u)}{u^{2}} d u \\
& =o(n \log n)+n \int_{1 / n}^{\pi / 2} \frac{|f(t)|}{t} \log \frac{t+1 / 2 n}{t-1 / 2 n} d t \\
& =o(n \log n)+O\left(n \int_{1 / n}^{\pi / 2} \frac{|f(t)|}{t} \frac{1}{t-1 / 2 n} \cdot \frac{1}{n} d t\right) \\
& =o(n \log n) .
\end{aligned}
$$

The second integral of the right hand side of (16) is, in the absolute value, less than

$$
\begin{align*}
& \frac{1}{2 \pi^{2}} \int_{1 / n}^{\pi / 2} \frac{|f(t)|}{t} d t \int_{t+1 / 2 n}^{\pi} \frac{|f(u)|}{u(u-t)} d u \tag{17}\\
& \quad+\frac{1}{2 \pi^{2}} \int_{3 / 2 n}^{\pi / 2} \frac{|f(t)|}{t} d t \int_{1 / n}^{t-1 / 2 n} \frac{|f(u)|}{u(u-t)} d u
\end{align*}
$$

the first term of which is, by integration by parts and (8),

$$
\begin{aligned}
& \leqq \frac{1}{2 \pi^{2}} \int_{1 / n}^{\pi / 2} \frac{|f(t)|}{t}\left[\frac{\Phi(u)}{u(u-t)}\right]_{t+1 / 2 n}^{\pi} d t+\frac{1}{2 \pi^{2}} \int_{1 / n}^{\pi / 2} \frac{|f(t)|}{t} d t \int_{t+1 / 2 n}^{\pi} \frac{\Phi(u)(2 u-t)}{u^{2}(u-t)^{2}} d u \\
& \leqq \frac{\Phi(\pi)}{2 \pi^{3}} \int_{1 / n}^{\pi / 2} \frac{|f(t)|}{t(\pi-t)} d t+o\left(n \int_{1 / n}^{\pi / 2} \frac{|f(t)|}{t} d t\right)+o\left(\int_{1 / n}^{\pi / 2} \frac{|f(t)|}{t} d t \int_{t+1 / 2 n}^{\pi} \frac{d u}{(u-t)^{2}}\right) \\
& =o(\log n)+o(n \log n)+o\left(n \int_{1 / n}^{\pi / 2} \frac{|f(t)|}{t} d t\right) \\
& =o(n \log n) .
\end{aligned}
$$

Similarly we can prove that the second term of (17) is also $o(n \log n)$. Thus we get

$$
\begin{equation*}
J_{4,1}=o(n \log n) \tag{18}
\end{equation*}
$$

Lastly we shall estimate $J_{4,3}$.

$$
\begin{align*}
\left|J_{4,3}\right| & \leqq \frac{1}{2 \pi^{2}} \int_{1 / n}^{\pi / 2} \frac{|f(t)|}{t} d t \int_{1 / n}^{\pi} \frac{|f(u)|}{u} \frac{d u}{u+t} \tag{19}\\
& \leqq \frac{1}{2 \pi^{2}} \int_{1 / n}^{\pi / 2} \frac{|f(t)|}{t} d t \int_{1 / n}^{\pi} \frac{|f(u)|}{u^{2}} d u \\
& =o(n \log n)
\end{align*}
$$

by (9).
Combining (14), (15), (18) and (19) we have

$$
\begin{equation*}
J_{4}=o(n \log n) . \tag{20}
\end{equation*}
$$

Thus by (11), (12), (13) and (20) the proof is complete.

[^0]: 1) This is due to Hardy and Littlewood, The strong summability of Fourier series, Fund. Math., 25 (1935), 162-189.
 2) Hardy-Littlewood, loc. cit. It is unsolved, however, whether (2) holds almost everywhere.
