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Ergodic Theorems and the Markoff Process
with a Stable Distribution.

By Shizuo KAKUTANI.
Mathematical Institute, Osaka Imperial University.

(Comm. by T. TAKA(I, M.I.A., March 12, 1940.)

1. Introduction. A Markoff process P(t, E)) is called to have a
stable distribution (E), if there exists a completely additive non-nega-
tive set function 7(E) (with (/2)= 1) defined for all Borel set E/2
such that

(dt)P(t,E)=(E) for any Borel set E .(1)

For example, the Markoff process defined by a -measure preserving
transformation S(t) P(t, E)= 1 if S(t) E, --0 if S(t) E, has (E) as
its stable distribution; and another example thereof is given by the

Markoff process with symmetric -density (t, s)" P(t, E)- IP(t, s) (ds),
p(t, 8)= p(s, t).

It is the purpose of the present paper to discuss such a class of
Markoff processes. The same problem is also discussed by K. Yosida)

in the preceding paper. He has proved that a mean ergodic theorem
(for exact formulation see Theorem 2 below) holds for any Markoff
process with stable distributions. Since this class of Markoff processes
contains the case of measure preserving transformations, his result is a
generalization of the mean ergodic theorem of J. v. Neumann.s In the
present paper, we shall first prove (Theorem 1) that even an ergodic
theorem of G. D. Birkhoff’s type) is valid for such a class of Markoff
processe. Indeed, we shall prove that for any bounded Borel measur-

able function (t) defined on the sequence -,(t) (N=I, , ...),

where

(2) x(t) tP(’)(t, ds)x(s) n 1, 2,...,

converges -almost everywhere on /2. This result is, in essential, due
to J. L. Doob.) We shall next show that the mean ergodic theorem

1) As for thelnotions concerning Markoff process, see:
S. Kakutani: Some results in the operator-theoretical treatment of the Mar-

koff process, Proc. 15 (1939), 260-264. K. Yosida: Operator-theoretical treatment of
the Markoff process, Proc. 14 (1938), 363-367, Pro 15 (1939), 127-130.

2) K. Yosida Markoff process with stable distribution, Proc. 16 (1940), 43-48.
3) J.v. Neumann Proof of the quasi-ergodic hypothesis, Proc. Nat. Acad. U.S.A.,

18 (1932), 70-82.
4) G.D. Birkhoff: Proof of the ergodic theorem, Proc. Nat.Acad. U.S.A., 18

(1932), 650-655.
5) J.L. Doob: Stochastic" processes with an integral valued parameter, Trans.

Amer. Math. Soc., 44 (1938), 87-150.
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follows at once from this result (see the proof of Theorem 2). Con-
sequently, Theorem 1 is more precise than the result of K. Yosida
(But the proof of K. Yosida is simpler and elegant). It is, however, to
be remarked that the complete analogy of G.D. Birkhoff’s ergodic
theorem is not yet established in the indeterministic case. Indeed, the

-almost everywhere convergence of the sequence {-nfln() (--"

1, 2, ...) or any 4ntgrabl unction (), which sx11 by analogT,
is not yet prowd or gensral MarkoiY procses with stabl distributions.

In 3, the inverse probability and inverse Markoff process are dis-
cussed, and it will be seen that these notions are useful in many pro-
blems concerning the Markoff process with stable distributions.

2. Oertor-oretc[ coidertios. We have oten observed
that

(3) z-, T() - (E) {(dt) P(, )
is a positive bounded linear operation o norm 1 which maps the Banach
space (9) of all the completely additive real valued set functions (E)
(l[ total variation of (E) on Y) into itself, and that

(4) -- T()=" (t)= P(t, d)(e)

is a lsitive bounded linear oration of norm 1 which maps the Banaeh
spaee (M*) of all the bounded Borel measurable real valued funetions
w() (llll-l.u.b. of l(t) on ) into ielf. Prom the standpoint of
this rator theory, the exisl:enee of a stable distribution o(N) means
that o(N) is a positive proof element of T belonging to the
value 1.

If we now consider the Banaeh saee L() o all he -ineable
Borel murable1 valued funetins (t) (1I11=1 (t) l(gt)), then

defines al a unded linear oraon of norm 1 whieh mas (f) in
it,ll. oreover, T may also considered as a bounded linear
tion of norm 1 whieh mas the naeh saee (f)o all he unded
Borel measurable real valu funetions (t) (llll=f-ntial maximum
of I (t) on ) into ilf.

On the other hand, the operation T maps a -absolutely continuous
function (E)e () into a -absoluly continuous function y(E)e ().
Since the subspaee of all the -absoluly continuous functions of ()
is imetrie with L(), T may also eonsider as a unded linear
oration of norm 1 which maps L() into itself"

(5)

for any Borel t E . It will again clear that the same ora-
tion may eonsider as a bound linear oration of norm 1 which
maps M() in it,ll.

Thus the Markoff proee with a stable distribution (E) defines



No. 3.] Ergodic Theorems and the Markoff Process with a Stable Distribution. 51

two classes of bounded linear operations T and T, which map the
Banach spaces (!l), L(), M()and (M*), L(), M() respectively into
themselves.

3. Inverse probability and the inverse Markoff process. Since

Q(F, E)--(dt)P(t, E) (E) and Q(9, E) (E) for any Borel sets

F and E, there exists for any F a bounded Borel measurable real
valued function R(F, s) such that 0 R(F, s) 1, R(9, s)= 1 and
Q(F, E)=R(F, s)(ds) for any Borel sets F and E. R(F, s) is deter-

mined up to a set of -measure zero for each F. If we assume that
R(F, s) is completely additive in F for any fixed s, then R(F, s)defines
a Markoff process which is inverse to the given Markoff process P(t, E).
Indeed, R(F, s) is the inverse probability that a point s e/2 is trans-
ferred from the point of the Borel set F by the Markoff process P(t, E).
It is clear that (E) is also a stable distribution for R(F, s), and that
P(t, E) is again the inverse of R(F, s). Further, it will be almost clear
that in this case (5) becomes"

x- T(x) y y(s) x(t)R(dt, s)(6)

(It is to be noted that, without assuming the complete additivity of
R(F, s) in F, y(s) is determined only up to a set of -measure zero).
In this way, the complete duality between P(t, E) and R(F, s) will be
established. But we shall not discuss this problem in detail here.

4. Measures in the product space. Consider a space /2* whose
element t* is a sequence of points t*= {t} (i=O, :i:1, :t:2, ...), where

is an arbitrary point of /2, and the notation (i) written over t de-
notes that t is the i-th coordinate of t*. We may write symbolically"

(-2) (-1) (0) (1) (2)
9"=--./2 x/2 /2 /2 /2 x .... We shall introduce a completely additive
measure .*(E*) on /2*. Let us first consider the subset E* of /2* of

(m-2) (re--.l) (m) On+l) (n) (n+l) (n+2)

the form" E*=...x /2x 2 x E E+ x /2x x ...or
(m) (re+l) (n)

more symbolically" E* E, E,+ E,, where o <2 m n <: oo
and E(m i n) is a Borel set of/2. Strictly speaking, E* is the set

(i)

of all the sequences t* =(t} (i=0, :i:1, +/-2, ...) such that teE for
m <:: i n, and t e/2 for i m-1 and i n+ 1. Let us denote by *the family of all such sets E*, and by * the family of all the sub-
sets F* of 9* of the form F* ]E * *E, E 0 (i -j), E e*
(i= 1, 2,..., n). If we put

*(E*)=I I"" I(dt’) P(t’’ dt,/)P(t/, dt,/,)...P(t,,_, dt.)
Em Era+ En

Em Em+i En

and *(F*)=, *(E$), then *(F*)is,clearly a finitely additive measure
i-1
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on * (with *(*)=1). By a theorem of A. Kolmogoroff-J. L. Doob,
*(F*) is even completely additive on *. Consequently, by a well-known
result, *(F*) can be extended to a completely additive measure *(F*)
on the least Borel family B(*) which contains *. It will be almost
clear that this *(F*) is invariant under the one-to-one mapping

(translation) of * into itself" S(t*)=*, where *= tt} and *=
(i=0, +/-1, +/-2, ...) (i. e., the -th coordinate of t* is the (+l)-th co-
ordinate of t*).

We shall next introduce another kind of measures on *. Let
(m) (re+l)

*(*) be the family of all the sets E* of the form" E*=E,,,xE,+ x
() (-) (-+1) (-m)

xE (E*---E_ x E_+ x x E_) with 1 m , and consider the
family

_
xu- of all the sets F* of the form E*=, g, -*-E =0

(i v), E* ...,e*(*) (i 1, 2, n). If we put

t*o(E*)= I I IP()(to, dt)P(t, dt,+)P(t/, dt/)...P(t,-, dt,)
Em Em+l En

E-n
R(dt__,

and o =to(E ) ((F*)= o(E ) then to(F ) ) is

finitely addigve on *(*), and it may ily sn that o(F*)
(:o(F*)) is even complexly additive on *(*). Hence :(F*)

((F*)) can extend B(*)(B(*)), and it will be sily n
that we have

any E* e B(*) (E" e B(*)).for
$. Indivu ergod torem.
Tem 1. t P(t, E) be a Markoff prs with a sb d-

$riti (E). Then f any x(t) e M() tre e an (t) e M()
ch

1(8)
N

where x(t) (n=l, 2, ...) defined by (2) (or equivalently, by (4),

Proof. By the ergic threm of G. D. Birkhoff in L(*) on 9",
there exists for any x*(t*)eL(*) an *(t*)eL(*) such that

1 x*(S’(t*))*(t*) *-almost everywhere on *.(9)
N



No. 3.] Ergodic Theorems and the Markoff Process with a Stable Distribution. 53

(i)

As a special case put z*(t*)=z(to), where t*= {t} (i=0, :kl, +2, ...)
and z(t) e M(). Then z*(t*) e M(*) L(*), and (9) becomes"

(10) 1 , x(t) --> *(t*) *-almost everywhere on *.
N --1

Let E be the set of *-measure zero where the convergence (10)
might not hold. We may assume that EeB(*). If we have
o(E)=O for some t0eY2, then we have, by integrating (10)with
respect to *o(E) all over 2",

Hence, all what we have to prove is that there exists a set Eo of
o-measure zero in .Q such that toEo implies -* *%(Eo)=0. This is, how-

ever, clear since we have, by (7), -* * (E)=O.

Remark. If we assume the complete additivity of R(F, s), then
by considering S-, R(F, s) and (E*) instead of S, P(t, E) and
respectively, there exists for any x(t)e M() an (t)e M() such that

(11) 1 y] 0_(t)-- (t) -almost everywhere on 2,

where o_(s)=Ioc(t)RC)(dt, s) (or equivalently, by (6), x_--T(z)).
6. Deduction of the mean ergodic $heorem from the individual

ergodic theorem.
Theorem . Let P(t, E) be a Markoff process with a stable dis-

tribution (E). Then there exists for any z(t)eL() an (t)eL()
such tha

;v 1 , T,(z) e --,01 , ,(e)_(t) (d0=_ ,-,.
where (n--1,2,...) is defined by and Ii---II means $he

norm in L(V).
Proof. We shall first treat the ease when x(t)e M(o). By Theorem

1, there exists an ()eM(o) such that (8) is true. Since {z(t)} (n=
1, 2, ...) is uniformly bounded, we have (1) by integrating (8) with
respect to o(E) a]] over 9. In order to prove the genera] case, we have

l1 ]only to notiee tha the sequenee -" (N=I, % ...) f uniformly

bunded linear olrations whieh ma L(o)int it.self converges strongly
at any (t)eM(o) L(o). 8inee M(o)is dense in L(o), the same sequ-
ence converges strongly t any (t)e L(o).

Remark 1. In the Sleial ease f a f-measure preservin trans-
formation, T may also be eonsidered as a bounded linear oration of
nrm 1 wNeh mas L()( 1) in itl. Henee, by the
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arguments as in above (since M() is dense in L()), the mean er-
godic theorem holds in L()(p 1). This resu}t is also obtained by
M. Fukamiyae by appealing to the dominated ergodic theorem of N.
Wiener.7

Remark . Theorem 2 may be deduced from the mean ergodic
theorem in L(*) on *. Indeed, since S is *-measure preserving on
9", there exists for any z*(t*)eL(*) an *(t*)eL(*) such that

1 N

&*

In the sIial case when *(t*)=(t), where t*= {t} (i=0, -t-1, -t-2, ...)
and x(t) e (f), (18) implies, by (7),

1 ,z(t)--,*(t*) -*d*tpo(t ) tp(dto)--0;

and this relation is equivalent (12) i we put (to) *(t*)(dt*).

Furthermore, if we consider S-, R(F, s) and o insad of S,
*E*P(t, E) and o( resctively, then we have, in the me way in

ave,
1(14) N-(t)-)(t) (dt) ,.,.--’()- 0

where x_=T’(x)(n=l, 2, ...) is defined as in (11). It is to be re-
marked that, as is shown by K. Yosida in the preceding paper, the
existence of the inverse probability (i. e., the complete additivity of
R(F, s)) is not needed for the validity of (14).

Remark (Added by the proof). As is kindly pointed out by K.
Yosida, we may assume that the inverse probability R(F, s) is com-
pletely additive in F if /2 is separable with respect to the measure
(E). This follows by the same arguments as in J. L. Doob (see foot-
note (5)).

6) M. Fukamiya: On dominated ergodic theorem in L’(p 1), TShoku Matl
Journ., 46 (1939), 150-153.

7) N. Wiener: The homogeneous chaos, Amer. Journ. of Math., 60 (1938), 897-
936. N. Wiener: The ergodic theorem, Duke Math. Journ., 5 (1939), 1-18.


