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13. Ergodic Theorems and the Markoff Process
with a Stable Distribution.

By Shizuo KAKUTANIL
Mathematical Institute, Osaka Imperial University.
(Comm. by T. TAKAGI, M.I.A., March 12, 1940.)

1. Introduction. A Markoff process P(t, E)? is called to have a
stable distribution ¢(E), if there exists a completely additive non-nega-
tive set function (&) (with ¢(£2)=1) defined for all Borel set £ 2
such that

) f,o(dt) P(t, E)=p(E) for any Borel set Ec 2.
Q2

For example, the Markoff process defined by a ¢-measure preserving
transformation S(t): P(t, E)=1 if S({)eE, =0 if S(t)€E, has ¢(E) as
its stable distribution ; and another example thereof is given by the

Markoff process with symmetric ¢-density (¢, s): P(E, E)=jp(t, s) p(ds),

(t, 8)=p(s, t). s

It is the purpose of the present paper to discuss such a class of
Markoff processes. The same problem is also discussed by K. Yosida®
in the preceding paper. He has proved that a mean ergodic theorem
(for exact formulation see Theorem 2 below) holds for any Markoff
process with stable distributions. Since this class of Markoff processes
contains the case of measure preserving transformations, his result is a
generalization of the mean ergodic theorem of J. v. Neumann.® In the
present paper, we shall first prove (Theorem 1) that even an ergodic
theorem of G. D. Birkhoff’s type? is valid for such a class of Markoff
processes. Indeed, we shall prove that for any bounded Borel measur-

N
able function z(t) defined on £ the sequence {%I—E_lx,,(t)} (N=1,2,..),
where

@ 2alt)= [P, d)ale),  m=1,2,...,
2

converges ¢-almost everywhere on £. This result is, in essential, due
to J. L. Doob.” We shall next show that the mean ergodic theorem

1) As for the notions concerning Markoff process, see:

S. Kakutani: Some results in the operator-theoretical treatment of the Mar-
koff process, Proc. 15 (1939), 260-264. K. Yosida: Operator-theoretical treatment of
the Markoff process, Proc. 14 (1938), 363-367, Proc. 15 (1939), 127-130.

2) K. Yosida: Markoff process with stable distribution, Proc. 16 (1940), 43-48.

3) J.v. Neumann: Proof of the quasi-ergodic hypothesis, Proc. Nat. Acad. U.S.A.,
18 (1932), 70-82.

4) G.D. Birkhoff: Proof of the ergodic theorem, Proc. Nat. Acad. US.A.,, 18
(1932), 650-665.

5) J.L. Doob: Stochastic' processes with an integral valued parameter, Trans.
Amer. Math. Soc., 44 (1938), 87-150.



50 S. KAKUTANIL [Vol. 16,

follows at once from this result (see the proof of Theorem 2). Con-
sequently, Theorem 1 is more precise than the result of K. Yosida.
(But the proof of K. Yosida is simpler and elegant). It is, however, to
be remarked that the complete analogy of G. D. Birkhoff’s ergodic
theorem is not yet established in the indeterministic case. Indeed, the

N
p-almost everywhere convergence of the sequence {%’iz_lw,,(t)} (N=

1,2, ...) for any yp-integrable function (), which is expected by analogy,
is not yet proved for general Markoff processes with stable distributions.
In §38, the inverse probability and inverse Markoff process are dis-
cussed, and it will be seen that these notions are useful in many pro-
blems concerning the Markoff process with stable distributions.
2. Opverator-theoretical considerations. We have often” observed
that

@) z— T(z)=y: y(E)=§x(dt) P(t, E)

is a positive bounded linear operation of norm 1 which maps the Banach
space (M) of all the completely additive real valued set functions x(E)
(lzl|l=total variation of z(¥) on £) into itself, and that

) s—T@)=y: yt)=|P(t, ds)als)
2

is a positive bounded linear operation of norm 1 which maps the Banach
space (M*) of all the bounded Borel measurable real valued functions
() (lxll=Lu b. of |(t)| on 2) into itself. From the standpoint of
this operator theory, the existence of a stable distribution ¢(E) means
that ¢(F) is a positive proper element of T belonging to the proper
value 1.

If we now consider the Banach space L(p) of all the p-integrable

Borel measurable real valued functions z(t) (Ila;||=j| 2(2) | ga(dt)), then T

Q2
defines also a bounded linear operation of norm 1 which maps L(¢) into

itself. Moreover, T' may also be considered as a bounded linear opera-
tion of norm 1 which maps the Banach space M(p) of all the bounded
Borel measurable real valued functions 2(t) ([« [=g¢-essential maximum
of |z(t)| on £2) into itself.

On the other hand, the operation T maps a g-absolutely continuous
function x(£)e (M) into a p-absolutely continuous function ¥(E)e (M).
Since the subspace of all the g-absolutely continuous functions of ()
is isometric with L(¢), T may also be considered as a bounded linear
operation of norm 1 which maps L(p) into itself :

®) 52— T@=y: [ud)old)=[a(v) pdt) P, )
E 2
for any Borel set £ — 2. It will again be clear that the same opera-
tion may be considered as a bounded linear operation of norm 1 which
maps M(p) into itself.
Thus the Markoff process with a stable distribution ¢(E) defines
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two classes of bounded linear operations T and 7T, which map the
Banach spaces (M), L(p), M(p) and (M™*), L(p), M(p) respectively into
themselves.

3. Inverse probability and the inverse Markoff process. Since

Q(F, E)E§¢(dt)P(t, E) < o(E) and Q(2, E)=¢(E) for any Borel sets

F and Ef there exists for any F a bounded Borel measurable real
valued function R(F,s) such that 0 R(F,s)<1, R(L s)=1 and

QF, E)=jR(F, s)¢(ds) for any Borel sets F and E. R(F,s) is deter-

yol

mined up to a set of p-measure zero for each F. If we assume that
R(F, s) is completely additive in F' for any fixed s, then R(F, s) defines
a Markoff process which is inverse to the given Markoff process P(t, E).
Indeed, R(F,s) is the inverse probability that a point se £ is trans-
ferred from the point of the Borel set F' by the Markoff process P(t, E).
It is clear that ¢(&) is also a stable distribution for R(F),s), and that
P(t, E) is again the inverse of R(F',s). Further, it will be almost clear
that in this case (5) becomes:

6) o T@)=y: y(s)=Sac(t)R(dt, 5.
2

(It is to be noted that, without assuming the complete additivity of
R(F,s) in F, y(s) is determined only up to a set of ¢-measure zero).
In this way, the complete duality between P(t, E) and R(F,s) will be
established. But we shall not discuss this problem in detail here,

4., Measures in the product space. Cons1der a space 2% whose

element t* is a sequence of points t*—{t,} (z=0, +1, 12, ...), where
t; is an arbitrary point of £, and the notation () written over ¢; de-

notes that #; is the i-th coordinate of t*. We may write symbolically :
EED O D @

Q"= 0x2x02x2x 2x---, We shall introduce a completely additive

measure ¢*(E*) on 2%, Let us first consider the subset E* of £2* of
(m-2) (m—1) @m) (m+1) (n) n+l) (n+2)

the form: E*=--x X @ X Ep, X Epyy X - X E, X 2 X 2 X --- or
(m) (m+1) (n)

more symbolically: E*=FE,x E, % - xHE, where —oo <mn<< o
and Eim<i<m)is a Borel set of .Q Strictly speaking, E™* is the set

of all the sequences t*—{t,} (=0, +1, £2, ...) such that t;eE; for
m<i1<m, and ;e 2 for 2 <m—1 and 1 =n+1. Let us denote by G*
the family of all such sets E*, and by §* the family of all the sub-

sets F* of 9 of the form: F*=§EE;‘, Er-E=0 (i), Ef ¢G*
(:=1,2,...,m). If we put
" B)=] [ [oldtn) Pltm, dlrns) Pltmrs, Ao Pt s, dt)

'm Em+1Ep

)
j S jR(dt,,,, tmi) R(dtnss, tmsd)- - R(dtn-y, ta) o(dt,)
E

Epy1 £y

and ¢*(F*)=§ ¢*(E7), then F*(F™*) is clearly a finitely additive measure
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on §* (with ¢*(£*)=1). By a theorem of A. Kolmogoroff-J. L. Doob,
¢*(F™) is even completely additive on §*. Consequently, by a well-known
result, ¢*(F*) can be extended to a completely additive measure ¢*(F™)
on the least Borel family B(¥*) which contains F*. It will be almost
clear that this ¢*(F'*) is invariant under the onet)to-one marip)ing
(translation) S of 2* into itself: S(£*)=t", where ¢*={£,} and t*' = {t1s1}
(z=0, +1, +2, ...) (i.e.,, the ¢-th coordinate of t* is the (¢+1)-th co-
ordinate of t*).

We shall next introduce another kind of measures on £2*. Let
(m) (m+l)

@*((65*) be the _fa;m}l_y 3f all the sets E* of the form: E*=FE, X Ep1X
- X E’ (BE*=E_,xE_,x- x E_m) with 1<m < =n and consider the
family F*( %*) of all the sets F'™ of the form: E*—glE,*, Ef-E;=0

(G X7), EXe€*@*) (i=1,2,...,n). If we put

BB = [ o [Pt At) Pt Qi) Pl Q) Plta 1, )

Ep Epy1Ey

(Fe@Er=[ [~ (Rt t0) R mstnsa)-..

—nEoni1 E_p

R(dt—m—l: t—m) R( M)(dt—my tﬂ))

and Pi(F*)= zm(E*) (pr(F*)= zat.,(E*)) then ZH(F™) (PH(F™)) is
finitely additive on %*(%*), and it may be easily seen that @i (F™)
( ,.,(F*)) is even completely additive on F*(F*). Hence ¢L(F™)

(7%(F™)) can be extended to B(F*) (B(F*)), and it will be easily seen
that we have

@ [otaumi(E = @) ([etatozuEm=o @)
Q

for any E* ¢ B(F*) (E*eB(§*)).

5. Individual ergodic theorem.

Theorem 1. Let P(t, E) be a Markoff process with a stable dis-
tribution ¢(E). Then for any x(t)e M(p) there exists an Z(t) e M(p)
such that

(8) W st,,(t)—m(t) p-almost everywhere on 2,
where z.(t) (n=1,2,...) is defined by (2) (or equivalently, by (4),
2, =T"(2)).

Proof. By the ergodic theorem of G. D. Birkhoff in L(¢*) on 2%,
there exists for any x*(t*) e L(¢*) an Z*(t*) e L(¢*) such that

©) % %-lx* (Sn(t*)) —Z*(t*)  ¢*-almost everywhere on 2.



No. 8.] Ergodic Theorems and the Markoff Process with a Stable Distribution. 53

As a special case put z*(t*)=ux(ty), where t*={(:‘i-)} (t=0, +1, +2,...)
and 2(f) e M(p). Then x*(t*) e M(p*) = L(p*), and (9) becomes:

N
(10 -ZIV le(tn)—ﬁ;*(t*). ¢*-almost everywhere on 2%,

Let Ej be the set of ¢*-measure zero where the convergence (10)
might not hold. We may assume that E;eB(F*). If we have
¢5(Es)=0 for some te 2, then we have, by integrating (10) with
respect to ¢ (Ey) all over 2%,

LS at) =1 33 Pt dia)ate) — | wiae’) 2 (=30t
N ™" N P i -

Q
Hence, all what we have to prove is that there exists a set Ey of
p-measure zero in £ such that &€ E, implies ¢7(E¢)=0. This is, how-
ever, clear since we have, by (7), j¢(dte)¢;(E:)=¢*(E;)=o.

2
Remark. If we assume the complete additivity of R(F,s), then
by considering S, R(F,s) and ¢;(E™) instead of S, P(t, E) and ¢;,(E™)
respectively, there exists for any x(t)e M(¢) an %(t) e M(p) such that

N
(11) % E_}Iw_,,(t) — z(%) p-almost everywhere on 2,

where x_,,(s)=jx(t)R‘”’(dt, s) (or equivalently, by (6), a:-,,=T"(x)).

2
6. Deduction of the mean ergodic theorem from the individual
ergodic theorem.
Theorem 2. Let P(t,E) be a Markoff process with a stable dis-
tribution ¢(E). Then there exists for any x(t)e L(p) an %(t) e L(p)
such that

(12) HJ—%x,,(t)—a-o(t)lgo(dt)s“li e
2 Nn-l Nﬂ.-l
where ,=T"x) (n=1,2,...) is defined by (2), and |---| means the

norm in L(yp).

Proof. We shall first treat the case when x(f) e M(¢). By Theorem
1, there exists an Z(¢) e M(p) such that (8) is true. Since {z,(f)} (n=
1,2,...) is uniformly bounded, we have (12) by integrating (8) with
respect to ¢(E) all over 2. In order 1130 prove the general case, we have
only to notice that the sequence {—llvnzlil—”‘} (N=1,2,...) of uniformly
bounded linear operations which map L(y) into itself converges strongly
at any 2(t) e M(p) = L(p). Since M(y) is dense in L(p), the same sequ-
ence converges strongly at any x(t) e L(y).

Remark 1. In the special case of a p-measure preserving trans-

formation, T may also be considered as a bounded linear operation of
norm 1 which maps L?(p) (p=1) into itself. Hence, by the same
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arguments as in above (since M(p) is dense in L”(g?)), the mean er-
godic theorem holds in L?(¢) (p ==1). This result is also obtained by
M. Fukamiya® by appealing to the dominated ergodic theorem of N.
Wiener.”

Remark 2. Theorem 2 may be deduced from the mean ergodic
theorem in L(p*) on £2*. Indeed, since S is ¢*-measure preserving on
2% there exists for any x*(t*) e L(¢*) an Z*(t*) e L(¢™) such that

N
(18) “;U 7];/: ”Z_Iw* (S"(t*)) —F*(t")|p*(dt*) —0.

“
In the special case when x*(t*)=ux(t;), where t*= {t,-)} (=0, =1, +2,...)
and 2(t) e L(p), (13) implies, by (7),

I (X Satea—a))paarm

2lgs N =1

and this relation is equivalent to (12) if we put ﬂ_v(to)ES 2 (t*)on(dt™).

o(dt)) —0;

2%
Furthermore, if we consider S, R(F',s) and ¢;,(E™) instead of S,
P(t, E) and ¢;(E*) respectively, then we have, in the same way as in
above,

a |

Q

—0,

N
g_.;‘l Tx)—%

14 = di)=
A7 23540 —50) gl =

B

where z_,=T"(x) (n=1,2,...) is defined as in (11). It is to be re-
marked that, as is shown by K. Yosida in the preceding paper, the
existence of the inverse probability (i.e., the complete additivity of
R(F', s)) is not needed for the validity of (14).

Remark (Added by the proof). As is kindly pointed out by K.
Yosida, we may assume that the inverse probability R(F, s) is com-
pletely additive in F' if £ is separable with respect to the measure
¢(E). This follows by the same arguments as in J. L. Doob (see foot-
note (5)).

6) M. Fukamiya: On dominated ergodic theorem in L»(p>>1), Tohoku Math.
Journ., 46 (1939), 150-153.

T7) N. Wiener: The homogeneous chaos, Amer. Journ. of Math., 60 (1938), 897-
936. N. Wiener: The ergodic theorem, Duke Math. Journ., 5 (1939), 1-18.



