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29. On ector Lattice with a Unit.
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Mathematical Institute, Osaka Imperial University.

(Comm. by T. TAKAGI, M.I.A., May 12, 1941.)

1. Introduction and the theorems. The purpose of the present
note is to give a new proof to Kakutani-Krein’s lattice-theoretic charac-
terisation of the space of continuous functions on a bicompact space).
We first represent algebraically the vector lattice as point functions
and then introduce the topology to the represented function lattice,
while Kakutani-Krein’s (independent and different) proofs both make
use of the assumed norm and hence the conjugate space of the vector
lattice. Our treatment may be compared with Birkhoff-Stone-Wallman’s
representation of Boolean algebra as field of sets or with Gelfand’s)

representation of normed ring as function ring).
A vector lattice E is a partially ordered real linear space, some of

whose elements f are "non-negative" (written f:> 0) and in which
(V1)" Iff0 and a0, then afrO.
(V2)" Iff0 and -f0, then f=0.
(V3)" Iff0 and g0, thenf/g0.
(V 4)" E is a lattice by the semi-order relation f g.

In this note we further assume the Archimedean axiom
(V 5)" If f> 0 and a 0, then af 0 (in order-topology),

and the existence of a unit I 0 satisfying
(V 6)" For any fe E there exists a :> 0 such that -aIfaL
A linear subspace N of E is called an ideal) if N contains with

f all x satisfying xllfl. Here we put, as usual, Ifl=f+-f-,
f/ --f /0--sup (f, 0), f-=f/ 0=inf (f, 0). An ideal N E is called
maximal if it is contained in no other ideal 4 E. Denote by Yt the
set of all the maximal ideals N of E. It is proved below that the re-
sidual class E/N of E mod any maximal ideal N is linear-lattice-iso-
morphic to the vector lattice of real numbers, the non-negative ele-
ments e E and I respectively being represented by non-negative num-
bers and the number 1. We denote by f(N) the real number which

1) S. Kakutani: Proc. 16 (1940), 63-67. M. and S. Krein: C.R. URSS, 27 (1940),
427-430.

2) I. Gelfand C.R. URSS, 23 (1939), 430-432.
3) After the present paper was completed, I knew, by Y. Kawada’s remark, the

paper of M.H. Stone: Proc. Nat, Acad. Sci. 27 (1941), 83-87, which arrived at our
institute only recently. In this paper, Stone sketches a proof of Kakutani’s theorem
which is essentially the same as ours. (He seems to have not read Krein’s paper.)
Stone proves firstly the case of Banach vector lattice and then reduces the general
case to it, while we first prove the algebraic case and then deduce from it the case
of Banach vector lattice. It is to be noted that we do not, in the proof of the re-
presentation theorem, make use of the metrical nor order completeness other than the
Archimedean axiom (V 5).

(4) Normal subspace in the terminology of Garrett Birkhoff: Lattice Theory,
New York (1940).
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corresponds to fe E by the homomorphism E-- E/N, N e ?R. Then we
have the

Theorem 1. By the correspondence f-f(N), E is linear-lattice-
isomorphically mapped on the vector lattice F() of real-valued bounded
functions on such that i) If l-[f(N) I, ii) I(N)=I on and iii)
F(91) is separable on 9l, viz.

(V 7)" For any two different points N,, Ne and for any two
real numbers a,, a. there exists fe E satisfying f(N,)=a,,
f(N)= ...

Next introduce a topology in by calling open the set of all
points Ne which satisfy ]3(N)-f(N0) [<: z, i= 1, 2, ..., n, where
No e t, ::> 0, n and f(-Igq I) are arbitrary. Then is bicom-
pact since it may be identified with a closed subset of a topological
product (of the same potency as the cardinal number of elements e E
between-I and I) of the real intervals (-1, /1). Each function
f(N) e F(91) is continuous on the bicompact space 9l by the above topo-
logy. The set C() of all the real-valued continuous functions C(N)
on 9l is a Banach vector lattice with the norm Ilcl[=suplc(N)l, by
calling "non-negative" the non-negative functions. As a precision to
theorem 1 we have

Theorem 2. F() is dense in C(9l) by the norm
Theorem 3. If we assume that E is a Banach space by the norm

Ilfll=inf a, -aIf aI, then the representation f--f(N) is not only
linear-lattice-isomorphism but also an isometry and F(91) coincides with
the whole

The theorem 3 is the Kakutani-Krein’s characterisation mentioned
above.

2. The proofs. The theorem 1 may be proved by the following
series of lemmas.

Lemma 1. A linear subspace N of E determines a lattice homo-
morphism E--E/N if and only if N is an ideal.

Proof. See G. Birkhoff" loc. cir., p. 109.
Lemma 2. Unless E= {aI}, -oo a< co, E contains a non-

trivial ( 0, E) ideal.
Proof. Let f ,I for any ?’. Let a=inf a’, a’I fi fl sup

’If, then aIfI and a 2> {. Hence (f-I)+ - 0, (f-3I)- 0
for a:>:>. The set N of all the elements gee satisfying
gl (f-I)+ is a non-trival ideal since Nh(f-I)-.

Lemma 3. For any non-trivial ideal No, there exists a maximal
ideal N containing No.

Proof. Construct a sequence of ideals

No, N, ..., Nv, (Nv < N+v E) 7 <: o

If is a limit ordinal, define f---g mod N to mean fg rood N for
some y <: o. That N is an ideal follows from lemma 1, moreover
N E sinee I 0 mod N, y <: o. This proeess defines a transfinite
sequence of linear-lattiee-eongruenee relations on E, each more inclusive
than the last. Hence it cannot eontinue indefinitely, for the number of
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different congruence relations are bounded. Thus, by the lemma 2, we
would obtain the demanded maximal ideal N No.

Lemma . If f 0, then there exists a maximal ideal N not con-
taining f.

Proof. If Ifl >= aI for a certain a ::> 0, then the lemma is evident
from lemma 2 and 3. Let such a do not exist, and assume f+:> 0 and
f+ aI for no a:>0, without losing the generality. Let f=inf-,
’If+, then / :> 0 by f+ :> 0. We have (I-f+ :> 0 and I-f+ >= af+
for no a :> 0, by the definition of /. Thus the ideal No of all the ele-
ments g e E satisfying ]gl Y((I-f+) does not contain f+. Hence the
maximal ideal N containing No does not contain f+, since otherwise N
would contain I and hence would coincide with E. Afortiori N does
not contain f.

We have ineidentally proved that for any two different points N.
N. e 92, there exists fe E such that f0 mod N, f----1 mod N. Hence
the function lattice F(9)on the bicompact space 92 satisfies the separa-
bility axiom (V7). Thus, by M. and S. Krein’s lemma in the cited
paper, F(92) is dense in C(92) by the norm llc[lo This proves theorem
2, and the proof of theorem 3 is now evident.

3. Determination of the maximal ideals. Let T be a set of
points t and let E(T) be a real linear set of real-valued bounded func-
tions f(t) on T such that" i) E(T) contains the constant function 1,
ii) E(T) is a lattice such that we have Ill= If(t)I, iii) for any two
points t, t e T(t - t2) there exists a function f(t)e E(T) satisfying
f(t)=0, f(t)=l and iv) E(T) is a Banach space by the norm
sup If(t)I. Then any point t e T induces a linear-lattice-homomorphism
f---f(t) of E(T) on the vector lattice of real numbers. Hence each
t e T defines a maximal ideal Nt(f-f(t) by E(T)- E(T)/Ni) of E(T).
The set {Nt} is dense in the bicompact space 9 of all the maximal
ideals N of E(T). For if an element feE(T) satisfies f(t)=0 on T,
then f is the zero-element of E(T) and hence the continuous function
on 9, which represent f by the theorem 3, must be --0 on 92. Thus
we obtain, by making use of iii)

Theorem 4. T is mapped by t- Nt one-to-one on a dense subset
of

If T is a completely regular topological space and if E(T) is the
set of all the real-valued bounded continuous functions on T, then E(T)
surely satisfies i)-iv). In this case we easily verify, by the definition
of the topology of 92 ( 2), that the correspondence t,-N is a homeo-
morphism. Thus, by theorem 4, we obtain Tychonoff’s theorem con-
cerning the imbedding of the completely regular space in bicompact
space. In particular, when T is bicompact, T may be identified with
92 by the homeomorphism t -> N. Hence two bicompact spaces T and

1) They stated this lemma without proof. I express my thanks to T. Nakayama
and M. Fukamiya for discussing the proof of this lemma.

2) A. Tychonoff: Math. Annalen, 102 (1930), 544-561.
$) Similar treatment, which makes use of the conjugate space of E(T) (without

regarding E(T) as a lattice), was given by S. Kakutani: Is6sfigaku (Japanese), 2
(1940), 14-21.
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T are homeomorphic if and only if the vector lattices E(T) and E(T)
are linear-lattice-isomorphic in such a way that the constant function
1 corresponds to the constant function 1. This may be considered as
lattice-theoretic counterpart of Gelfand-Kolmogoroff’s theorem1).

1) I. Gelfand and A. Kolmogoroff: C.R. URSS, 22 (1939), 11-15.


