PAPERS COMMUNICATED

50. On Axioms of Linear Functions.

By Kôshichi Toyoda.
Harbin Technical College, Manchoukuo.
(Comm. by M. Fujiwara, m.i.a., July 12, 1941.)

1. Let a set G of elements a, b, c, \ldots, satisfy the following axioms:
(1) There exists an operation in G which associates with each pair a, b of G an element c of G, i. e., $a \cdot b=c$.
(2) The operation satisfies the associative law:

$$
(a \cdot b) \cdot(c \cdot d)=(a \cdot c) \cdot(b \cdot d)
$$

(3) If a, b, c are any given elements, each of the equations $a \cdot x=c$ and $x \cdot b=c$ is uniquely soluble in G for x.

As an example, we show that a real linear function of two real variables x, y, i. e.,

$$
x \cdot y=\lambda x+\mu y+\nu
$$

satisfies the above axioms (1), (2), (3). Conversely, we shall prove
Theorem 1^{11}. The set G forms an abelian group with respect to the new operation $x+y=z$ which is defined by the equation

$$
a \cdot s+r \cdot b=a \cdot b
$$

where r and s denote two fixed elements in G.
Furthermore, the operation $x \cdot y$ of G is expressed as a linear function of x, y with respect to the new operation such that

$$
x \cdot y=A x+B y+c,
$$

where A and B denote the automorphisms of G and are mutually permutable, that is, $A B=B A$, and c is a fixed element in G.

Next, let us consider a set G^{*} of elements a, b, c, \ldots, which satisfies the axioms (1), (2) and the axiom
(3*) There exists at least one unit element 0 in G^{*}, i. e., $0 \cdot 0=0$ and, if a is any given element, each of the equations $x \cdot 0=a$ and $0 \cdot x=a$ has at least one solution in G^{*} for x.

As examples, we show that the sum (or product) of two sets a, b of points, i. e.,

$$
a \cdot b=a \dot{+} b \dot{+} 0
$$

and a linear differential expression of two real functions $x(t), y(t)$ of a real variable t, i, e,,

[^0]\[

$$
\begin{aligned}
& x(t) \cdot y(t)=\left(\sum_{k=1}^{n} a_{k}(t) \frac{d^{k}}{d t^{k}}\right) x(t)+\left(\sum_{k=1}^{m} b_{k}(t) \frac{d^{k}}{d t^{k}}\right) y(t), \\
& \left(\sum_{k=1}^{n} a_{k}(t) \frac{d^{k}}{d t^{k}}\right)\left(\sum_{k=1}^{m} b_{k}(t) \frac{d^{k}}{d t^{k}}\right)=\left(\sum_{k=1}^{m} b_{k}(t) \frac{d^{k}}{d t^{k}}\right)\left(\sum_{k=1}^{n} a_{k}(t) \frac{d^{k}}{d t^{k}}\right),
\end{aligned}
$$
\]

satisfy the above three axioms (1), (2), (3*). Conversely, we have
Theorem 2^{2}. Let us introduce a new operation $x+y \sim z$ into G^{*} which is defined by the two conditions:
(i) If $x \cdot 0=x^{\prime} \cdot 0, x \sim x^{\prime}$.
(ii) If $x=a \cdot 0$ and $y=0 \cdot b, \quad x+y=a \cdot b$.

Then, the new operation $x+y \sim z$ is one-valued in G^{*} and the set G^{*} forms a commutative semi-group with respect to this operation.

Furthermore, the operation $x \cdot y$ of G^{*} is expressed as a linear function of x, y with respect to the new operation such that

$$
x \cdot y=A x+B y
$$

where A and B denote the. homomorphisms of G^{*} and are mutually permutable, i.e., $A B=B A$.

Finally, let us consider a set G of elements $a_{1}, a_{2}, \ldots, b_{1}, b_{2}, \ldots$, which satisfies the following axioms:
(1) There exists an operation in G which associates with each class of n elements $a_{1}, a_{2}, \ldots, a_{n}$ of G an $(n+1)$-th element a_{0} of G, i. e., $\left(a_{1}, a_{2}, \ldots, a_{n}\right)=a_{0}$.
(2) The operation satisfies the associative law:

$$
\begin{aligned}
& \left(\left(a_{1}, a_{2}, \ldots, a_{n}\right), \quad\left(b_{1}, b_{2}, \ldots, b_{n}\right), \quad \ldots \ldots, \quad\left(d_{1}, d_{2}, \ldots, d_{n}\right)\right) \\
= & \left(\left(a_{1}, b_{1}, \ldots, d_{1}\right), \quad\left(a_{2}, b_{2}, \ldots, d_{2}\right), \ldots \ldots, \quad\left(a_{n}, b_{n}, \ldots, d_{n}\right)\right) .
\end{aligned}
$$

(3) If a, b, c are any given elements, each of the equations

$$
(x, b, a, \ldots, a)=c \quad \text { and } \quad(b, x, a, \ldots, a)=c
$$

is uniquely soluble in G for x.
Then, we have
Theorem 3 ${ }^{33}$. Let us introduce a new operation into G such that

$$
\left(a, e_{0}, e_{0}, \ldots, e_{0}\right)+\left(e_{0}, b, e_{0}, \ldots, e_{0}\right)=\left(a, b, e_{0}, \ldots, e_{0}\right)
$$

where $e_{0}=\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ and $e_{1}, e_{2}, \ldots, e_{n}$ denote n fixed elements in G.
Then, the set G forms an abelian group with respect to the new operation $x+y=z$ and the operation $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of G is expressed as a linear function of elements $x_{1}, x_{2}, \ldots, x_{n}$ with respect to the new operation such that

$$
\begin{gathered}
\left(x_{1}, x_{2}, \ldots, x_{n}\right)=A_{1} x_{1}+A_{2} x_{2}+\cdots \cdots+A_{n} x_{n}+c, \\
A_{i} A_{k}=A_{k} A_{i}, \quad(i, k=1,2, \cdots, n)
\end{gathered}
$$

2) G. Birkhoff, Lattice Theory, 1940.
3) K. Toyoda, On linear functions of abelian groups, Proc. 16 (1940), 524-528.
M. Nagumo, Über eine Klasse der Mittelwerte, Japanese Journal of Math., 7 (1930), pp. 71-79.
A. Kolmogoroff, Sur la notion de la moyenne, Atti della Reale Academia Nazionale dei Lincei, 12 (1930), pp. 388-391.
where A_{1}, A_{2} are the automorphisms of G and $A_{3}, A_{4}, \ldots, A_{n}$ are the homomorphisms of G and c denotes a fixed element in G.
2. Proof of Theorem 1. Analogously as my previous papers ${ }^{1 \text { 1, 3) }}$, we shall proceed as follows.

Lemma 1. If the two equations $x \cdot a=b \cdot y$ and $z \cdot a=b \cdot w$ hold, then $x \cdot w=z \cdot y$.

Lemma 2.

$$
\begin{aligned}
& (x+r) \cdot s+(y+r) \cdot s=(x+y+r) \cdot s, \\
& r \cdot(x+s)+r \cdot(y+s)=r \cdot(x+y+s) .
\end{aligned}
$$

Proof. Let us put

$$
\begin{aligned}
& x=a \cdot s, \quad y=r \cdot b, \quad a \cdot b=p \cdot s, \\
& r=r^{\prime} \cdot s=r \cdot r^{\prime \prime}=r^{\prime \prime \prime} \cdot r, \\
& s=s^{\prime} \cdot s=r \cdot s^{\prime \prime}=s \cdot s^{\prime \prime \prime} .
\end{aligned}
$$

Then, we have

$$
\begin{aligned}
(x+r) \cdot s+(y+r) \cdot s & =\left(a \cdot r^{\prime \prime}\right) \cdot s+\left(r^{\prime} \cdot b\right) \cdot\left(s \cdot s^{\prime \prime \prime}\right) \\
& =\left(a \cdot r^{\prime \prime}\right) \cdot s+\left(r^{\prime} \cdot s\right) \cdot\left(b \cdot s^{\prime \prime \prime}\right) \\
& =\left(a \cdot r^{\prime \prime}\right) \cdot s+r \cdot\left(b \cdot s^{\prime \prime \prime}\right) \\
& =\left(a \cdot r^{\prime \prime}\right) \cdot\left(b \cdot s^{\prime \prime \prime}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
(x+y+r) \cdot s & =(a \cdot b+r) \cdot s=\left(p \cdot r^{\prime \prime}\right) \cdot\left(s \cdot s^{\prime \prime \prime}\right) \\
& =(p \cdot s) \cdot\left(r^{\prime \prime} \cdot s^{\prime \prime \prime}\right)=(a \cdot b) \cdot\left(r^{\prime \prime} \cdot s^{\prime \prime \prime}\right) \\
& =\left(a \cdot r^{\prime \prime}\right) \cdot\left(b \cdot s^{\prime \prime \prime}\right)
\end{aligned}
$$

which shows that the first equation holds.
Similarly, we can prove the second equation by the identities

$$
\begin{aligned}
r \cdot(x+s)+r \cdot(y+s) & =\left(r^{\prime \prime \prime} \cdot a\right) \cdot\left(s^{\prime} \cdot b\right) \\
& =r \cdot(x+y+s),
\end{aligned}
$$

for any two elements x, y.
Proof of Theorem 1. By means of Lemma 1, we know that G forms an abelian group with respect to the new operation $x+y=z$ and that, if we put

$$
(x+r) \cdot s=A x \quad \text { and } \quad r \cdot(y+s)=B y
$$

then we get, by means of Lemma 2 ,

$$
\begin{aligned}
x \cdot y & =x \cdot s+r \cdot y=A(x-r)+B(y-s) \\
& =A x+B y+c
\end{aligned}
$$

where $-c=A r+B s$.
3. Proof of Theorem 2. By the definitions, wo have Lemma 1.
(i) If $x \sim x^{\prime}$ and $y \sim y^{\prime}$, then $x \cdot y \sim x^{\prime} \cdot y^{\prime}$.
(ii) If $x \cdot 0=b \cdot y$ and $z \cdot 0=b \cdot w$, then $x \cdot w \sim z \cdot y$.

Proof. Since we have

$$
(x \cdot y) \cdot 0=(x \cdot 0) \cdot(y \cdot 0)=\left(x^{\prime} \cdot 0\right) \cdot\left(y^{\prime} \cdot 0\right)=\left(x^{\prime} \cdot y^{\prime}\right) \cdot 0,
$$

(i) holds. Also, (ii) is proved by

$$
\begin{aligned}
(x \cdot w) \cdot 0 & =(x \cdot 0) \cdot(w \cdot 0)=(b \cdot y) \cdot(w \cdot 0) \\
& =(b \cdot w) \cdot(y \cdot 0)=(z \cdot 0) \cdot(y \cdot 0) \\
& =(z \cdot y) \cdot 0
\end{aligned}
$$

Lemma 2.
(i) The operation $x+y \sim z$ determines uniquely a third element z in G^{*} and, if $x \sim x^{\prime}$ and $y \sim y^{\prime}$, then $x+y \sim x^{\prime}+y^{\prime}$.
(ii) $x \cdot 0+y \cdot 0=(x+y) \cdot 0$, for any elements x, y.

Proof. If we put

$$
\begin{aligned}
& x=a \cdot 0=a^{\prime} \cdot 0=0 \cdot c, \\
& y=d \cdot 0=0 \cdot b=0 \cdot b^{\prime},
\end{aligned}
$$

then, by means of Lemma 1 and the definition,

$$
x+y=a \cdot b \sim d \cdot c \sim a^{\prime} \cdot b^{\prime}
$$

which shows that the operation $x+y \sim z$ is one-valued.
Also, we have, by means of Lemma 1,

$$
\begin{aligned}
x \cdot 0+y \cdot 0 & =(a \cdot 0) \cdot 0+(0 \cdot b) \cdot 0 \\
& =(a \cdot 0) \cdot 0+0 \cdot(b \cdot 0) \\
& =(a \cdot 0) \cdot(b \cdot 0)=(a \cdot b) \cdot 0 \\
& =\left(a^{\prime} \cdot b^{\prime}\right) \cdot 0=(x+y) \cdot 0 .
\end{aligned}
$$

Consequently, (i) is proved by
that is

$$
(x+y) \cdot 0=x \cdot 0+y \cdot 0=x^{\prime} \cdot 0+y^{\prime} \cdot 0=\left(x^{\prime}+y^{\prime}\right) \cdot 0,
$$

Lemma 3.
(i) $x+y \sim y+x$.
(ii) $x+0 \sim 0+x \sim x$.
(iii) $(x+y)+z \sim x+(y+z)$.

Proof. By means of Lemma 1 and the definitions, it is evident that (i) and (ii) hold.

In order to prove (iii), let us put

$$
\begin{aligned}
& x=0 \cdot a, \quad y=b \cdot 0, \quad z=0 \cdot c \\
& b \cdot a=p \cdot 0, \quad b \cdot c=q \cdot 0
\end{aligned}
$$

Then, by means of Lemmas 1 and 2, we get
and

$$
(x+y)+z \sim(y+x)+z \sim b \cdot a+0 \cdot c \sim p \cdot c
$$

whence

$$
x+(y+z) \sim(y+z)+x \sim b \cdot c+0 \cdot a \sim q \cdot a
$$

$$
(x+y)+z \sim p \cdot c \sim q \cdot a \sim x+(y+z)
$$

Lemma 4.
(i) If $0 \cdot x=y \cdot b$ and $0 \cdot z=w \cdot b$, then $0 \cdot(w \cdot x)=0(y \cdot z)$.
(ii) $0 \cdot x+0 \cdot y=0 \cdot(x+y)$, for any elements x, y.

Proof. Analogously as Lemma 1, we show that (i) holds. In order to prove (ii), let us put

$$
\begin{aligned}
& x=a \cdot 0=a^{\prime} \cdot 0=0 \cdot c, \\
& y=d \cdot 0=0 \cdot b=0 \cdot b^{\prime} .
\end{aligned}
$$

Then, we get

$$
\begin{aligned}
0 \cdot x+0 \cdot y & =0 \cdot(a \cdot 0)+0 \cdot(0 \cdot b)=(0 \cdot a) \cdot 0+0 \cdot(0 \cdot b) \\
& =(0 \cdot a) \cdot(0 \cdot b)=0 \cdot(a \cdot b)=0 \cdot(d \cdot c) \\
& =0 \cdot\left(a^{\prime} \cdot b^{\prime}\right)=0 \cdot(x+y)
\end{aligned}
$$

Proof. of Theorem 2. By means of Lemma 3, we know that G^{*} forms an abelian semi-group with respect to the new operation $x+y \sim z$ and that, by means of Lemmas 1,2 and 4 , the operation $x \cdot y$ of G^{*} becomes a linear function of x, y, that is,

$$
x \cdot y=x \cdot 0+0 \cdot y=A x+B y
$$

4. Proof of Theorem 3. Analogously as Theorems 1 and 2, we apply the following lemmas.

Lemma 1. If the simultaneous equations

$$
\begin{aligned}
& (x, a, a, \ldots, a)=(b, y, a, \ldots, a) \\
& (z, a, a, \ldots, a)=(b, w, a, \ldots, a)
\end{aligned}
$$

hold, then it follows that

$$
(x, w, a, \ldots, a)=(z, y, a, \ldots, a)
$$

Proof. Putting $a^{\prime}=(a, a, \ldots, a)$, we get

$$
\begin{aligned}
& \left((x, w, a, \ldots, a), \quad a^{\prime}, a^{\prime}, \ldots, a^{\prime}\right) \\
= & \left((x, a, a, \ldots, a), \quad(w, a, a, \ldots, a), \quad a^{\prime}, a^{\prime}, \ldots, a^{\prime}\right) \\
= & \left((b, y, a, \ldots, a), \quad(w, a, a, \ldots, a), \quad a^{\prime}, a^{\prime}, \ldots, a^{\prime}\right) \\
= & \left((b, w, a, \ldots, a), \quad(y, a, a, \ldots, a), \quad a^{\prime}, a^{\prime}, \ldots, a^{\prime}\right) \\
= & \left((z, a, a, \ldots, a), \quad(y, a, a, \ldots, a), \quad a^{\prime}, a^{\prime}, \ldots, a^{\prime}\right) \\
= & \left((z, y, a, \ldots, a), \quad a^{\prime}, a^{\prime}, \ldots, a^{\prime}\right) .
\end{aligned}
$$

Hereafter, we apply
Notation.
(i) $\left(e_{1}, e_{2}, \ldots, e_{n}\right)=e_{0}$ and $\left(e_{k}, e_{k}, \ldots, e_{k}\right)=e_{k}^{\prime}$, for $k=1,2, \ldots, n$.
(ii) $\left(a, e_{0}, e_{0}, \ldots, e_{0}\right)+\left(e_{0}, b, e_{0}, \ldots, e_{0}\right)=\left(a, b, e_{0}, \ldots, e_{0}\right)$.

Lemma 2.

$$
\begin{aligned}
& (x, a, a, \ldots, a)+(a, y, a, \ldots, a) \\
= & (x, y, a, \ldots, a)+(a, a, a, \ldots, a)
\end{aligned}
$$

Proof. If we put

$$
\begin{aligned}
& x=\left(x_{1}, e_{1}, e_{1}, \ldots, e_{1}\right), \\
& y=\left(y_{2}, e_{2}, e_{2}, \ldots, e_{2}\right)=\left(e_{2}, y_{2}^{\prime}, e_{2}, \ldots, e_{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
a & =\left(a_{k}, e_{k}, e_{k}, \ldots, e_{k}\right), \text { for } k=1,2, \ldots, n, \\
& =\left(e_{k}, a_{k}^{\prime}, e_{k}, \cdots, e_{k}\right),
\end{aligned}
$$

then, it follows that

$$
\begin{aligned}
& (x, a, a, \ldots, a)+(a, y, a, \ldots, a) \\
= & \left(\left(x_{1}, a_{2}, a_{3}, \ldots, a_{n}\right), \quad e_{0}, e_{0}, \ldots, e_{0}\right)+\left(e_{0},\left(a_{1}^{\prime}, y_{2}^{\prime}, a_{3}^{\prime}, \ldots, a_{n}^{\prime}\right), e_{0}, e_{0}, \ldots, e_{0}\right) \\
= & \left(\left(x_{1}, a_{2}, a_{3}, \ldots, a_{n}\right), \quad\left(a_{1}^{\prime}, y_{2}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right), \quad e_{0}, e_{0}, \ldots, e_{0}\right) \\
= & \left(\left(x_{1}, a_{1}^{\prime}, e_{1}, \ldots, e_{1}\right), \quad\left(a_{2}, y_{2}^{\prime}, e_{2}, \ldots, e_{2}\right), \quad\left(a_{3}, a_{3}^{\prime}, e_{3}, \ldots, e_{3}\right), \ldots \ldots \ldots \ldots \ldots . .\right. \\
& \left.\ldots \ldots \ldots, \quad\left(a_{n}, a_{n}^{\prime}, e_{n}, \ldots, e_{n}\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& (x, y, a, \ldots, a)+(a, a, a, \ldots, a) \\
= & \left(\left(x_{1}, y_{2}, a_{3}, \ldots, a_{n}\right), \quad e_{0}, e_{0}, \ldots, e_{0}\right)+\left(e_{0},\left(a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}, \ldots, a_{n}^{\prime}\right), \quad e_{0}, e_{0}, \ldots, e_{0}\right) \\
= & \left(\left(x_{1}, y_{2}, a_{3}, \ldots, a_{n}\right), \quad\left(a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}, \ldots, a_{n}^{\prime}\right), \quad e_{0}, e_{0}, \ldots, e_{0}\right) \\
= & \left(\left(x_{1}, a_{1}^{\prime}, e_{1}, \ldots, e_{1}\right), \quad\left(y_{2}, a_{2}^{\prime}, e_{2}, \ldots, e_{2}\right), \quad\left(a_{3}, a_{3}^{\prime}, e_{3}, \ldots, e_{3}\right), \ldots \ldots \ldots \ldots \ldots . .\right. \\
& \left.\ldots \ldots . \quad\left(a_{n}, a_{n}^{\prime}, e_{n}, \ldots, e_{n}\right)\right) .
\end{aligned}
$$

On the other hand, we have, by means of Lemma 1,

$$
\left(a_{2}, y_{2}^{\prime}, e_{2}, \ldots, e_{2}\right)=\left(y_{2}, a_{2}^{\prime}, e_{2}, \ldots, e_{2}\right)
$$

which shows that Lemma 2 holds.
Lemma 3.
(i) $\left(x_{1}, x_{2}, \ldots, x_{k-1}, e_{k}^{\prime}, x_{k+1}, \ldots, x_{n}\right)+\left(e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{k-1}^{\prime}, x_{k}, e_{k+1}^{\prime}, \ldots, e_{n}^{\prime}\right)$

$$
=\left(x_{1}, x_{2}, \ldots, x_{k-1}, x_{k}, x_{k+1}, \ldots, x_{n}\right)
$$

(ii) $\left(e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{k-1}^{\prime}, x_{k}, e_{k+1}^{\prime}, \ldots, e_{n}^{\prime}\right)+\left(e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{k-1}^{\prime}, y_{k}, e_{k+1}^{\prime}, \ldots, e_{n}^{\prime}\right)$

$$
=\left(e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{k-1}^{\prime}, x_{k}+y_{k}-e_{k}^{\prime}, e_{k+1}^{\prime}, \ldots, e_{n}^{\prime}\right)
$$

Proof. If we put

$$
\begin{aligned}
x_{i} & =\left(a_{i}, e_{i}, e_{i}, \ldots, e_{i}\right), \text { for } i=1,2, \ldots, n, \\
& =\left(e_{i}, a_{i}^{\prime}, e_{i}, \ldots, e_{i}\right), \text { for } i=k, \\
y_{i} & =\left(e_{i}, b_{i}^{\prime}, e_{i}, \ldots, e_{i}\right), \text { for } i=k,
\end{aligned}
$$

then it follows that

$$
\begin{aligned}
& \left(x_{1}, \ldots, x_{k-1}, e_{k}^{\prime}, x_{k+1}, \ldots, x_{n}\right)+\left(e_{1}^{\prime}, \ldots, e_{k-1}^{\prime}, x_{k}, e_{k+1}^{\prime}, \ldots, e_{n}^{\prime}\right) \\
= & \left(\left(a_{1}, \ldots, a_{k-1}, e_{k}, a_{k+1}, \ldots, a_{n}\right), e_{0}, e_{0}, \ldots, e_{0}\right) \\
& +\left(e_{0},\left(e_{1}, \ldots, e_{k-1}, a_{k}^{\prime}, e_{k+1}, \ldots, e_{n}\right), e_{0}, \ldots, e_{0}\right) \\
= & \left(\left(a_{1}, \ldots, a_{k-1}, e_{k}, a_{k+1}, \ldots, a_{n}\right), \quad\left(e_{1}, \ldots, e_{k-1}, a_{k}^{\prime}, e_{k+1}, \ldots, e_{n}\right), \quad e_{0}, \ldots, e_{0}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \left(\left(a_{1}, e_{1}, \ldots, e_{1}\right), \quad\left(a_{2}, e_{2}, \ldots, e_{2}\right), \ldots \ldots, \quad\left(a_{k-1}, e_{k-1}, \ldots, e_{k-1}\right),\right. \\
& \left.\quad\left(e_{k}, a_{k}^{\prime}, e_{k}, \ldots, e_{k}\right), \quad\left(a_{k+1}, e_{k+1}, \ldots, e_{k+1}\right), \ldots \ldots, \quad\left(a_{n}, e_{n}, \ldots, e_{n}\right)\right) \\
= & \left(x_{1}, x_{2}, \ldots, x_{k-1}, x_{k}, x_{k+1}, \ldots, x_{n}\right)
\end{aligned}
$$

and, by means of Lemma 2,

$$
\begin{aligned}
& \left(e_{1}^{\prime}, \ldots, e_{k-1}^{\prime}, x_{k}, e_{k+1}^{\prime}, \ldots, e_{n}^{\prime}\right)+\left(e_{1}^{\prime}, \ldots, e_{k-1}^{\prime}, y_{k}, e_{k+1}^{\prime}, \ldots, e_{n}^{\prime}\right) \\
= & \left(\left(e_{1}, \ldots, e_{k-1}, a_{k}, e_{k+1}, \ldots, e_{n}\right), \quad e_{0}, \ldots, e_{0}\right) \\
& +\left(e_{0},\left(e_{1}, \ldots, e_{k-1}, b_{k}, e_{k+1}, \ldots, e_{n}\right), \quad e_{0}, \ldots, e_{0}\right) \\
= & \left(\left(e_{1}, \ldots, e_{k-1}, a_{k}, e_{k+1}, \ldots, e_{n}\right), \quad\left(e_{1}, \ldots, e_{k-1}, b_{k}^{\prime}, e_{k+1}, \ldots, e_{n}\right), \quad e_{0}, \ldots, e_{0}\right) \\
= & \left(e_{1}^{\prime}, \ldots, e_{k-1}^{\prime}, \quad\left(a_{k}, b_{k}^{\prime}, e_{k}, \ldots, e_{k}\right), \quad e_{k+1}^{\prime}, \ldots, e_{n}^{\prime}\right) \\
= & \left(e_{1}^{\prime}, \ldots, e_{k-1}^{\prime}, \quad\left(a_{k}, e_{k}, e_{k}, \ldots, e_{k}\right)+\left(e_{k}, b_{k}^{\prime}, e_{k}, \ldots, e_{k}\right)-e_{k}^{\prime}, \quad e_{k+1}^{\prime}, \ldots, e_{n}^{\prime}\right) \\
= & \left(e_{1}^{\prime}, \ldots, e_{k-1}^{\prime}, \quad x_{k}+y_{k}-e_{k}^{\prime}, \quad e_{k+1}^{\prime}, \ldots, e_{n}^{\prime}\right)
\end{aligned}
$$

Proof of Theorem 3. By means of Lemma 1 and the definition, we know that G forms an abelian group with respect to the new operation $x+y=z$ and that the operation $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of G becomes a linear function of $x_{1}, x_{2}, \ldots, x_{n}$.

Because, we obtain, by means of Lemma 3,

$$
\begin{aligned}
\left(x_{1}, x_{2}, \ldots, x_{n}\right) & =\sum_{k=1}^{n}\left(e_{1}^{\prime}, \ldots, e_{k-1}^{\prime}, x_{k}, e_{k+1}^{\prime}, \ldots, e_{n}^{\prime}\right) \\
& =\sum_{k=1}^{n} A_{k}\left(x_{k}-e_{k}^{\prime}\right) \\
& =\sum_{k=1}^{n} A_{k} x_{k}+c
\end{aligned}
$$

where A_{1}, A_{2} denote the automorphisms of G and $A_{3}, A_{4}, \ldots, A_{n}$ denote the homomorphisms of G and $c=-\sum_{k=1}^{n} A_{k} e_{k}^{\prime}$.

[^0]: 1) K. Toyoda, On axioms of mean transformations and automorphic transformations of abelian groups, Tôhoku Math. Journal, 47 (1940), pp. 239-251.
 K. Toyoda, On affine geometry of abelian groups, Proc. 16 (1940), 161-164.
 D. C. Murdoch, Quasi-groups which satisfy certain generalized laws, American Journal of Math., 16 (1939), pp. 509-522.
