70. On the Conformal Arc Length.

By Kentaro Yano and Yosio Mutô.
Mathematical Institute, Tokyo Imperial University.
(Comm. by T. Takagi, m.i.a., Oct. 11, 1941.)

Let us consider a curve C in a conformally connected manifold C_{n} whose conformal connection is defined by the formulae
(1)

$$
\begin{cases}d A_{0}= & d u^{i} A_{i} \\ d A_{j}=I_{j k}^{0} d u^{k} A_{0}+\Pi_{j k}^{i} d u^{k} A_{i}+\Pi_{j k}^{\infty} d u^{k} A_{\infty} \\ d A_{\infty}= & \Pi_{\infty}^{\infty} k \\ i\end{cases}
$$

where
(2)

$$
\begin{aligned}
& \Pi_{\infty / k}^{i}=g^{i j} \Pi_{j k}^{0}, \quad \Pi_{j k}^{\infty}=g_{j k} \quad \text { and } \quad g^{i j} g_{j k}=\delta_{k}^{i} \\
&(i, j, k, \ldots=1,2,3, \ldots, n)
\end{aligned}
$$

Defining two parameters s and t on the curve by the equations

$$
\begin{equation*}
g_{j k} \frac{d u^{j}}{d s} \frac{d u^{k}}{d s}=1 \tag{3}
\end{equation*}
$$

and
(4)

$$
\{t, s\}=\frac{1}{2} g_{j k} \frac{\partial^{2} u^{j}}{\delta s^{2}} \frac{\partial^{2} u^{k}}{\partial s^{2}}-I_{j k}^{0} \frac{d u^{j}}{d s} \frac{d u^{k}}{d s}
$$

respectively, where

$$
\begin{equation*}
\{t, s\}=\frac{d^{3} t}{d s^{3}} / \frac{d t}{d s}-\frac{3}{2}\left(\frac{d^{2} t}{d s^{2}} / \frac{d t}{d s}\right)^{2} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\delta^{2} u^{i}}{\partial s^{2}}=\frac{d^{2} u^{i}}{d s^{2}}+\Pi_{j k}^{i} \frac{d u^{j}}{d s} \frac{d u^{k}}{d s}, \tag{6}
\end{equation*}
$$

we find the following Frenet formulae ${ }^{1)}$

1) See, K. Yano, Sur la théorie des espaces à connexion conforme. Journal of the Faculty of Science, Tokyo Imperial University, Sec. I, Vol. IV, Part 1 (1939), 1-59.
where $\underset{(0)}{S}$ and $\underset{(2)}{S}$ are two point-spheres and $\underset{(1)}{S}, \underset{(3)}{S}, \ldots \ldots, \underset{(n)(\infty)}{S,}, n$ mutually orthogonal unit spheres all passing through the points $\underset{(0)}{S}$ and $\underset{(2)}{S}$.

The parameter t being defined by a Schwarzian differential equation, we shall call it projective parameter. The parameter t^{\prime} defined by

$$
\begin{equation*}
t^{\prime}=\frac{a t+b}{c t+d} \tag{8}
\end{equation*}
$$

is also a projective parameter. If we effect a transformation of the projective parameter t of the form (8), the curvature $\stackrel{3}{\varkappa}, \stackrel{4}{\varkappa}, \ldots, \stackrel{\infty}{\varkappa}$ appearing in the Frenet formulae (7) will be respectively transformed into $\stackrel{3}{\varkappa}_{\varkappa^{\prime}}, \stackrel{4}{\varkappa}_{\varkappa^{\prime}}, \ldots, \stackrel{\infty}{\varkappa^{\prime}}$, where

Hence, we can see that the differential

$$
\begin{equation*}
d \sigma=\left(3^{\frac{1}{2}} d t\right. \tag{10}
\end{equation*}
$$

is a conformal invariant, it is the conformal invariant of the least degree.

We shall call σ the conformal arc length of the curve. The conformal arc length does not exist for a generalized circle ${ }^{2)}$.

The conformal are length σ being thus defined, the point

$$
\begin{equation*}
\underset{(0)}{A}=\frac{d \sigma}{d t} \underset{(0)}{S}=\frac{d \sigma}{d s} A_{0} \tag{11}
\end{equation*}
$$

is a not only geometrically but also analytically invariant point.
Differentiating the point $\underset{(0)}{A}$ with respect to σ, we have

$$
\begin{equation*}
\underset{(1)}{A}=\frac{d}{d \sigma} \underset{(0)}{A}=\frac{\frac{d^{2} \sigma}{d t^{2}}}{\frac{d \sigma}{d t}} \underset{(0)}{S}+\underset{(1)}{S}, \tag{12}
\end{equation*}
$$

hence, we can see that

$$
\begin{equation*}
\underset{(0)}{A} A=0, \quad \underset{(0)}{A} A=0, \quad \underset{(1)}{A} A=1, \tag{13}
\end{equation*}
$$

that is, A is an analytically invariant unit sphere passing through the point $\underset{(0)}{(1)}$ Differentiating the unit sphere $\underset{(1)}{A}$ with respect to σ, we obtain

$$
\frac{d}{d \sigma} \underset{(1)}{A}=\frac{\frac{d^{3} \sigma}{d t^{3}}}{\left(\frac{d \sigma}{d t}\right)^{2}} \underset{(0)}{S}-\frac{\left(\frac{d^{2} \sigma}{d t^{2}}\right)^{2}}{\left(\frac{d \sigma}{d t}\right)^{3}} \underset{(0)}{S}+\frac{\frac{d^{2} \sigma}{d t^{2}}}{\left(\frac{d \sigma}{d t}\right)^{2}} \underset{(1)}{S}+\frac{1}{\frac{d \sigma}{d t}} \underset{(2)}{S}
$$

[^0]or
\[

$$
\begin{equation*}
\frac{d}{d \sigma} \underset{(1)}{A}=\frac{\{\sigma, t\}}{\left(\frac{d \sigma}{d t}\right)^{2}(0)} A+\frac{1}{2} \frac{\left(\frac{d^{2} \sigma}{d t^{2}}\right)^{2}}{\left(\frac{d \sigma}{d t}\right)^{3}} \underset{(0)}{S}+\frac{\frac{d^{2} \sigma}{d t^{2}}}{\left(\frac{d \sigma}{d t}\right)^{2}} \underset{(1)}{S}+\frac{1}{\frac{d \sigma}{d t}} \underset{(2)}{S} \tag{14}
\end{equation*}
$$

\]

Now, putting

$$
\begin{equation*}
\lambda=\frac{\{\sigma, t\}}{\left(\frac{d \sigma}{d t}\right)^{2}}=-\{t, \sigma\} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\underset{(2)}{A}=\frac{1}{2} \frac{\left(\frac{d^{2} \sigma}{d t^{2}}\right)^{2}}{\left(\frac{d \sigma}{d t}\right)^{3}} \underset{(0)}{S}+\frac{\frac{d^{2} \sigma}{d t^{2}}}{\left(\frac{d \sigma}{d t}\right)^{2}} \underset{(1)}{S}+\frac{1}{\frac{d \sigma}{d t}} \underset{(2)}{S}, \tag{16}
\end{equation*}
$$

we find from (14)

$$
\begin{equation*}
\frac{d}{d \sigma} \underset{(1)}{A}=\lambda \underset{(0)}{A_{(2)}}+\underset{\text { (2) }}{A} . \tag{17}
\end{equation*}
$$

The function λ being defined by the Schwarzian derivative $-\{t, \sigma\}$ where t is a projective parameter and σ is a conformal one, the equation (17) shows that the sphere $\underset{(2)}{A}$ defined by (16) is an analytically invariant one. Moreover, the equations (11), (12) and (16) shows that

$$
\underset{(0)(0)}{A} A=\underset{(2)}{A} A=0, \quad \underset{(0)}{A} A=\underset{(2)}{A} A=0, \quad \underset{(1)}{A} A=1, \quad \underset{(1)}{A} A=-1,
$$

that is $\underset{(2)}{A}$ is a point on the sphere $\underset{(1)}{A}$ satisfying the relation $\underset{(0)}{A} A=-1$.
Substituting the relation

$$
\left.\frac{d \sigma}{d t}=()^{\frac{3}{2}}\right)^{\frac{1}{2}}
$$

in (15), we can find the expression

$$
\begin{equation*}
\lambda=\frac{1}{2}\left[\frac{1}{\binom{3}{\varkappa}^{2}} \frac{d^{2}{ }^{3}}{d t^{2}}-\frac{5}{4} \frac{1}{\binom{3}{\varkappa}^{3}}\left(\frac{d_{\mathfrak{\varkappa}}^{3}}{d t}\right)^{2-}\right], \tag{18}
\end{equation*}
$$

which is a conformal invariant we have already found in a previous paper ${ }^{11}$.

Now, differentiating $\underset{(2)}{A}$ along the curve with respect to σ, we obtain

$$
\frac{d}{d \sigma} \underset{\text { (2) }}{A}=\left[\frac{\frac{d^{2} \sigma}{d t^{2}} \frac{d^{3} \sigma}{d t^{3}}}{\left(\frac{d \sigma}{d t}\right)^{4}}-\frac{3}{2} \frac{\left(\frac{d^{2} \sigma}{d t^{2}}\right)^{3}}{\left(\frac{d \sigma}{d t}\right)^{5}}\right] \underset{(0)}{S}+\left[\frac{\frac{d^{3} \sigma}{d t^{3}}}{\left(\frac{d \sigma}{d t}\right)^{3}}-\frac{3}{2} \frac{\left(\frac{d^{2} \sigma}{d t^{3}}\right)^{2}}{\left(\frac{d \sigma}{d t}\right)^{4}}\right] \underset{(1)}{S}-\frac{\frac{3}{\varkappa}}{\left(\frac{d \sigma}{d t}\right)^{2}}{ }_{(3)}^{S}
$$

1) K. Yano and Y. Mutô. loc. cit.

$$
\begin{aligned}
& =\frac{\{\sigma, t\} \frac{d^{2} \sigma}{d t^{2}}}{\left(\frac{d \sigma}{d t}\right)^{3}} \underset{(0)}{S}+\frac{\{\sigma, t\}}{\left(\frac{d \sigma}{d t}\right)^{2}} \underset{(1)}{S}-\frac{\mathfrak{\varkappa}^{\left(\frac{d \sigma}{d t}\right)^{2}}}{(3)} S \\
& =\frac{\{\sigma, t\}}{\left(\frac{d \sigma}{d t}\right)^{2}}\left[\frac{\frac{d^{2} \sigma}{\frac{d t^{2}}{d \sigma}} \underset{(0)}{d t}}{S}+\underset{(1)}{S}\right]-\frac{3^{3}}{\left(\frac{d \sigma}{d t}\right)^{2}}{ }_{(3)}^{S}
\end{aligned}
$$

from which

$$
\begin{equation*}
\frac{d}{d \sigma} \underset{(2)}{A}=\lambda \underset{(1)}{A}-\underset{(3)}{S} \tag{19}
\end{equation*}
$$

in virtue of the relation

$$
\lambda=\frac{\{\sigma, t\}}{\left(\frac{d \sigma}{d t}\right)^{2}}, \quad \underset{(1)}{A}=\frac{\frac{d^{2} \sigma}{d t^{2}}}{\frac{d \sigma}{d t}} \underset{(0)}{S}+\underset{(1)}{S} \text { and } \frac{\frac{3}{x}}{\left(\frac{d \sigma}{d t}\right)^{2}}=1
$$

The equation (19) shows that the $\underset{(3)}{S}$ is an analytically invariant unit sphere, hence, if we put

$$
\begin{equation*}
\underset{(3)}{A}=-\underset{(3)}{S}, \tag{20}
\end{equation*}
$$

we have from (19)

$$
\begin{equation*}
\frac{d}{d \sigma} \underset{(2)}{A}=\lambda \underset{(1)}{A}+\underset{(3)}{A} . \tag{21}
\end{equation*}
$$

It will be easily verified that the unit sphere $\underset{\text { (3) }}{A}$ passes through the two points $\underset{(0)}{A}$ and $\underset{(2)}{A}$ and is orthogonal to the unit sphere $\underset{(1)}{A}$.

Differentiating the unit sphere $\underset{(3)}{A}$ along the curve with respect to σ, we have

$$
\begin{equation*}
\frac{d}{d \sigma} A=-\frac{1}{\frac{d \sigma}{d t}}\left[-\underset{(0)}{\varkappa_{(3)}^{3} S+\underset{(4)}{4} S}\right] \tag{22}
\end{equation*}
$$

consequently, if we put

$$
\begin{equation*}
\stackrel{4}{\lambda}=\frac{\stackrel{4}{x}_{\frac{d \sigma}{d t}}^{d t}}{\stackrel{4}{x}^{4}\left(3^{3}\right)^{-\frac{1}{2}}, \quad \underset{(4)}{A}=-\underset{(4)}{S}, ~ ;, ~} \tag{23}
\end{equation*}
$$

we obtain from (22)

$$
\begin{equation*}
\frac{d}{d \sigma} A=\underset{(0)}{A}+{\underset{(4)}{4}}_{(4)} \tag{24}
\end{equation*}
$$

This equation tells us that the unit sphere $\underset{\text { (4) }}{A}$ is an analytically invariant sphere, $\stackrel{4}{\lambda}$ being a conformal invariant.

The sphere $\underset{(4)}{A}$ passes through the points $\underset{(0)}{A}$ and $\underset{(2)}{A}$ and is orthogonal to the spheres $\underset{(1)}{A}$ and $\underset{(3)}{A}$. Differentiating

$$
\underset{(4)}{A}=-\underset{(4)}{S},
$$

we obtain
(25)

$$
\frac{d}{d \sigma} \underset{(4)}{A}=-\stackrel{4}{\lambda} \underset{(3)}{A}+\stackrel{5}{\lambda}_{(5)}^{A},
$$

where

$$
\begin{equation*}
\left.\lambda={ }_{\varkappa}^{5}(\varkappa)^{3}\right)^{-\frac{1}{2}} \tag{26}
\end{equation*}
$$

is a conformal invariant and

$$
\begin{equation*}
\underset{(5)}{A}=-\underset{(5)}{S} \tag{27}
\end{equation*}
$$

is an analytically invariant unit sphere passing through the points $\underset{(0)}{A}$ and $\underset{(2)}{A}$ and is orthogonal to the spheres $\underset{\text { (1) }}{A} \underset{(3)}{A}$ and $\underset{(4)}{A}$.

Continuing in this way, we obtain finally the following conformal Frenet formulae
where $\underset{(0)}{A}$ and $\underset{(2)}{A}$ are two points and $\underset{(1)}{A}, \underset{(3)}{A}, \ldots, \underset{(\infty)}{A}$ are n mutually orthogonal unit spheres passing through the points $\underset{(0)}{A}$ and $\underset{(2)}{A}$, and

The consequences of these conformal Frenet formulae will be developed in the forthcoming papers.

[^0]: 1) K. Yano and Y. Mutô, Sur la théorie des hypersurfaces dans un espace à connexion conforme. Japanese Journal of Mathematics, 17 (1941), 229-288.
 2) K. Yano, loc. cit.
