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49. On Krull’s Conjecture Concerning Completely
Integrally Closed Integrity Domains, Ii.

By Tadasi NAKAYAMA.
Department of Mathematics, Nagoya Imperial University.

(Comm. by T. TAKAGI, M.I.A., May 12, 1942.)

The case of partially ordered abelian groups being settled in Part
I, let us turn to integrity domains; we want to obtain an integrity
domain which is completely integrally closed but can never be expressed
as an intersection of special valuation rings>. Our following construc-
tion depends however on that of Part I.

Let A be a complete Boolean algebra satisfying the condition in
Part I, Lemma 1; there be a countable set of non-atomic non-zero
elements v in A so that for any a::>0 in A we have av for a
suitable is. Denote its representation space by 9=B(A). Then the
lattice-ordered abelian group La of continuous functions on I2, taking
(rational) integers and + o as values and finite except on nowhere
dense sets, cannot, as was shown in Part I, be represented faithfully
by (finite)real-valued functions (over any space). Now, let K be a
field, and consider, abstractly, variables (p) which are in one-one cor-
respondence with the points p in 2. When {p, p, ..., p} is a finite set
of (distinct) points of 9, a polynomial of the variables (p), (p), ...,
x(p) over K will be called in the following a pp....p,-polynomial. Let
{Ol, 02, --’, Or} be a subsystem of {pl, 02, .-., P,}. A PIP2... p,-polynomial
F{p,...p.) (=F(,{Pi), ., x(p,)) ) is said to be reduced to a Pl Pt.-poly-

nomial F(O p,), when it becomes the latter by putting x(p,/)=---
=x(p) 1 in symbol F(O... p,) - F(O... p,). Further, let P be a set
of first category in 2 and suppose hat for each finite system
of points in /2 not belonging to P there is given a p...p-polynomial
F(O... p,). If here F(O... p)-- F(O... p,) whenever (p, ..., p,} (p,...,
p,}, we call this whole scheme a polynomial series on /2 and denote it
by {F; P} (F(O... O);P). Two polynomial series {F; P) and {F; P’),
such that F(O... p) F(O... p) for every {p, ..., p} 9- Q, where Q
is a set of first category containing P, P’, will be called equivalent;
we consider equivalent polynomial series as one and the same. The
sum (product)of two polynomial series (F; P} and (F; P} is defined

by taking F(O... p,)+F(O p) (F(O...O) F(O...O)) for {p, ...,
/2-(P P,). Then the totality of polynomial series (the totality of
classes of equivalent polynomial series, to be exact) forms a ring R,

1) T. Nakayama, On Krull’s conjecture concerning completely integrally closed
integrity domains, I., Proc. 18 (1942), 185.

2) See the papers cited in Part I. Cf. also Enzyklopidie der Math. Wiss. I1, 11,
p. 40.

3) For instance, let A be the complete Boolean algebra of regular open sets of
the interval (0, 1).
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which is obviously an integrity domain.
Lemma 1. R is completely integrally closed.
Proof. Let {F; P}, {G; P} and {H; P) be three non-zero poly-

nomial series such that for every ,=1, 2, {F; P) {H; P) is divisi-
ble by {G;P}’;

(F; P,} (H; P} (G; Pe} (K(); P()}.

Then we want to show that (F; P,} is divisible by (G; P}.
For this purpose, let P be a set of first category containing P,,

P, P and all the P(), sach that

F(O p) H(O... p)= G(O... P) K()(O...

for (p, ..., p} -P. Since (G; P..}, (H; P} are non-zero, there is
a finite system {, ..., } of points in /2.-P such that G(...i) 0
and H(...) 4= 0. For those (Pl,-.-, P} (/2-P) containing (, ...,
} certainly H(O...p) 0. But then F(O...O,) must be divisible by
G(O...O), since, the polynomial domain K[x(p), ..., x(p)] is, as is wel
known, completely integrally closed. Let thus

(*) F(O p) G(O p) L(O p)

((P, ..., P} (, ..., r})- Here L(p... p,) is uniquely determined, be-
cause G(O... p)4 0 too. Further, if (p, ..., p} is another set contain-
ing (p, ..., Or} and if (p, ..., p} (p, ..., p}, then the same relation
as (*) holds for this, and therefore, L(O...O),L(O...O). As for
those (, ..., } (/2-P) not containing (, ..., r}, we define L(O p)
by L((p, ..,, p} )/., .--, }) -- L(p... p). Then L(p... p) ((p, ...,
/2-P) form a polynomial series (L;P}, as can readily be een.
Moreover, the relation (,) holds for every (p, ..., p} /2-P. Thus

(F; P} (G; P.} (L; P}.

This proves that R is completely integrally closed.
Lemma 2. R is not an intersection of special valuation rings

its quotient field.
Proof. Consider the lattice-ordered abelian group L, additively

written, of continuous functions on /2 taking integers and +/- o as
values and finite except on nowhere dense sets, alluded to above. With
every f 0 in L we associate a polynomial series () (x; N) as
follows" N is the nowhere dense set where f becomes + c, and for
p, ..., pe

f()l" )s)--" X()I)f(o’)’" X(Os)fOps)

Then evidently (xn} (xf} (xf’+}. Hence the semi-group of positive
elements in L is embedded isomorphically into the multiplicative semi-
group of R. Further, flf ( 0) if and only if (xn} is divisible
by (x} in R. If R were an intersection of special valuation rings,
then L would be represented faithfully by real valued functions con-
trary to our former result. Hence the lemma is proved.

We have therefore
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Theorem 1. The integrity domain R of polynomial series over
$2= 2(A), A being a complete Boolean algebra satisfying the condition
of Part I, Lemma 1 (See above), is completely integrally closed, but can
never be expressed as an intersection of special valuation rings in its
quotient field.

In connection with above, let us next solve another problem,
though small, of Krull. Namely, ia his paper in Math. Zeitschr. cited
before Krull reserved decision whether every principal ideal in a com-
pletely integrally closed integrity domain is always an intersection of
highest-dimensional primary ideals or not)). We shall show that the
answer is again negative.

Let A, /2=9(A), L and R be as above. We then consider a
subring R0 of R consisting of all those polynomial series {F;P}
satisfying the condition"

(**) if p, ..., p#P then there exist suitable neighborhoods U ...,
U of p, ...,p, respectively, such that for qe U, qeP (i=1,2, ...,s)
the polynomial r(q...q) is obtained from F(p... p) simply by replac-
ing x(p), ..., x(p) by x(q), ...,x(q).

That R0 is really a subring of R9 is obvious. Moreowr, if {F; P},
{F; P} are two elements of R0 and if the former, say, is divisible by
the latter in Rg, then the same is the case in R0 too. For, if {F; P}
{F; P} {F; P} then {F; P} e R0; this is evident from the unique-
ness of division in polynomial domains. From this remark follows that
R0 is, simultaneously with R, a completely integrally closed integrity
domain.

Let now {F; P} be a non-zero element in R0, and p, be a point of
9 not belonging to P. For a finite system {p, p, ..., p} (p, ..., p P),
containing p, we consider the highest power of x(p) which divides the
polynomial F(pp... p). Denote its exponent by f(pp.., p). If {p, p,
..., p} {p, p,..., p} (p, ..., p e P) then f(pp p) f(pp... Pt). Hence
there is a finite system {p, p, ..., p} such that for any {p, p, ..., Pt}
containing it fi(pp... Pt)=f(PP ..-Pt). We denote this value by f. Thus
with every point p e 2-P we have associated a non-negative integer f.

From the condition (**), which our {F; P} sasisfies, follows that
f is continuous in 2-P. Therefore), there exists a continuous func-
tion f(p) on the whole taking integers and +/- as values, such
that f(p)=f for p e2-P, f(p) is finite except on a nowhere dense
set, and is an element of the lattice-ordered group Lg.

So, to every element {F; P} in R0 there corresponds an element
f=f(p) of L. If {F;P}, {G;P’}eRo, {H;P’}={F;P}+(G;P’}
and if they correspond respectively to f, g and h in L, then h ::>fr g,
because h Min (f, g) for every p # P P’. Further, the product

1) w. Krull, teitrige zur Arithmetik kommutativer Integrititsbereiche, Math.
Zeitschr. 41 {1936) (p. 669, Footnote 9).

2) A primary ideal is called highest-dimensional when it belongs to a minimal
prime ideal.

3) Observe that is the representation space of a complete Boolean algebra.
Cf. T. Ogasawara, 1. c.
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{F; P) {G; P’) corresponds to the sum f/g. Hence, if p e 9 the totality
a of those elements {F; P) in R0 such as f(p)= + oo is an ideal of
Ro, and indeed a prime ideal, a is further not void.

Now, consider a minimal prime ideal in R0. We make distinc-
tion between two possibilities’ i) a 3 for a certain p e 2; ii) there
is no such p. In the first case we have, since is minimal,
In the second case, there exists for every p e/2 an element {F>;/)
of a not belonging to . f()eL corresponding to (F(); P()} takes
the value +c at p, and there is a neighborhood U of p so that,
f()(q) 1 for q e U. 2 is covered by a finite number of such neigh-
borhoods" /2= U, U. --- U. Consider the product

(F; P} (F<’>; P(’)} (F(:); P()} (F(>; P()}.

This does not belong to 3, since 3 is prime. But its corresponding
element f=f(’)/f(o:>+...+f(> of L is ::> 1 everywhere in /2.

Let (X} (X; 0} be the polynomial series such as X(O...
x(p:) for every (p, ..., p:} 0 being the void set. When 1 is the func-

tion on identically equal to 1 then this is nothing but (x} in our
former notation, and indeed, 1 is the element of L which corresponds.
to (X} e R0 in our sense. In the above case i) evidently (X} + . But
(X} 3 also in the second case. For, (F; P} is divisible by (X} and
(F; P} 3 (see above).

Thus always (X} + . This is the case for every minimal prime
ideal in R0, whence (X} is contained in no highest-dimensional
primary ideal in Ro. But (X} is certainly not a unit in R0. So we
arrive at

Theorem 2. Let A be as before. Let Ro be the integrity domain
consisting of all the polynomial series satisfying the condition (**), and
{X) be the element of Ro such that X(p...p)=x(P)...x(p) for every
(p, ...,p,}. Then Ro is completely integrally closed, but the principal
ideal ((X}) is not an intersection of highest-dimensional primarg ideals.

1) As a matter of fact, this first possibility is excluded. See Part I, Remark 1.


