PAPERS COMMUNICATED

102. On the Regular Vector Lattice.

By Masae ORIHARA.

Mathematical Institute, Tohoku Imperial University, Sendai. (Comm. by M. FUJIWARA, M.I.A., Nov. 12, 1942.)

Introduction. L. V. Kantrovitch introduced the notion of regularity¹⁾ in vector lattice and applied it to the space of measurable functions. In \$1 of this paper, we prove that the regularity axiom is decomposed into two simple propositions. In the succeeding articles we prove many theorems in Kantrovitch's paper under weaker assumption.

\$ **1.** Let \$ be a complete vector lattice. Then the regularity axiom due to Kantrovitch reads as follows:

If $E_n < \mathfrak{V}$ for n=1, 2, ... and $\sup E_n$ tends to a limit y, then for each n there exists a finite subset E'_n of E_n such that $\lim E'_n = y$.

For regular vector lattice \mathfrak{L} , two theorems hold as Kantrovitch shows.

I. If $y_i^{(k)} \to y_i$ (o) (as $k \to \infty$) and $y_i \to y$ (o) (as $i \to \infty$) in \mathcal{Q} , then there exists an increasing sequence of indices k_1, k_2, \ldots such that $y_i^{(k_i)} \to y$ (o) $(i \to \infty)^{2}$

II. For any set $E < \mathfrak{L}$, there exists an enumerable subset E' of E such that sup $E' = \sup E^{3}$

Conversely, we can prove the following theorem.

Theorem 1.1. I and II imply the regularity axiom.

Proof. By II, for each E_n there exists an enumerable set $E'_n = \{y_{n,k}\}$ k=1,2,..., such that $\sup E_n = \sup (y_{n,k})$ k=1,2,... If we put $y_n^{(k)} = \sup (y_{n,1,...}, y_{n,k})$, then $y_n^{(k)} \uparrow \sup E_n (n \to \infty)$. Therefore, if $\limsup_{n \to \infty} E_n = y_0$, then by I we can find an increasing sequence of indices $\{k_n\}$ such that $\lim_{n \to \infty} y_n^{(k_n)} = y_0$. Hence $\limsup_{n \to \infty} (y_{n,1,...}, y_{n,k_n}) = \limsup_{n \to \infty} E_n$.

From the proof it is easy to see that in **II** we can replace the condition $y_i^{(k)} \to y_i$ (o) (as $k \to \infty$) by $y_n^{(k)} \uparrow y_n$ (o) $(k \to \infty)$.

In the space of measurable functions (S), (o)-convergence is equivalent to almost everywhere convergence⁴⁾. Therefore, **I** is nothing but Fréchet's theorem⁵⁾.

We can easily verify that the space (S) satisfies **II**. But more generally we can prove

Theorem 1.2. II holds in the space of functions with metric function ρ such that 1°. for any $y \ge 0$, $\rho(y)$ is defined and ≥ 0 and $\rho(y) = 0$

¹⁾ L.V. Kantrovitch: Lineare halbgeordnete Räume, Recueil Math., 44 (1937), pp. 121-165.

²⁾ loc. cit., Satz 24.

³⁾ loc. cit., Satz 23, a).

⁴⁾ G. Birkhoff, Lattice theory, Chapter VII.

⁵⁾ M. Fréchet, Rendiconti di Palermo, 22 (1906), p. 15.

is equivalent to $y=0, 2^{\circ}, y_1 \leq y_2$ implies $\rho(y_1) < \rho(y_2), 3^{\circ}, y_n \rightarrow y$ (mototonously) implies $\rho(y_n) \rightarrow \rho(y)$.

Proof. Let $E < \mathfrak{L}$ be an upper bounded set, that is, there exists $y^* \in \mathfrak{L}$ such as $y \leq y^*$ for any $y \in E$. We can assume that E contains zero-element.

If we put $\overline{y} = \sup(0, y_1, ..., y_n)$ $(y_i \in E)$, then $\overline{y} \leq y^*$. Therefore $\rho(\overline{y}) \leq \rho(y^*)$ by 2°, hence $\{\rho(\overline{y})\}$ is bounded. That is, there exists a number ρ_0 such that $|\rho(\overline{y})| \leq \rho_0$. If we put $\rho_0 = 1$. u. b. $\rho(\overline{y})$, then there exists $\{\overline{y}_n\}$ such that $\lim_{n \to \infty} \rho(\overline{y}_n) = \rho_0$. We may assume $\overline{y}_1 \leq \overline{y}_2 \leq \cdots$. Let $\lim_{n \to \infty} \overline{y}_n = y'$, then $\rho(\overline{y}_n) \to \rho(y')$ by 3°. Thus we have $\rho(y') = \rho_0$.

We will now prove that $y' = \sup E$. $y \in E$ implies $\lim_{n \to \infty} \sup (\bar{y}_n, y) = \sup (y', y)$. Since $\rho(\sup (y'_n, y)) \leq \rho_0$, we have $\rho(\sup (y', y)) \leq \rho_0$. Obviously, $\sup (y', y) \geq y'$. Therefore $\rho(\sup (y', y)) \geq \rho(y') = \rho_0$. Thus $\sup (y', y) = y'$, namely $y \leq y'$. Thus we have $y' = \sup E$. (Q. E. D.)

Evidently conditions 1°, 2°, 3° for ρ are satisfied in (S), L^p $(p \ge 1)$, (s) and l^p $(p \ge 1)$.

§ 2. Let \mathfrak{L} be a σ -complete vector lattice for which I holds.

Lemma 2.1. σ -complete vector lattice is archimedian, that is, f > 0 and $\lambda_n \downarrow 0$ imply $\lambda_n f \downarrow 0$.

For the proof, see Birkhoff, Lattice theory, p. 106, Theorem 7.3.

Lemma 2.2. The sequence $\{f_n\}$ (o)-converges to f if and only if $|f_n-f| \leq w_n$, for some $w_n \downarrow 0$.

For the proof, see Birkhoff, loc. cit., p. 112, Lemma 2.

Theorem 2.1. If $y_n \to 0$ (o), then there exists a sequence of real numbers $\{\lambda_n\}$ such that $\lambda_n \to \infty$ and $\lambda_n y_n \to 0$ (o).

Proof. If we put $\overline{y}_n = \sup(|y_n|, |y_{n+1}|, ...)$, then $\overline{y}_n \downarrow 0$. Further put $\dot{y}_n^{(k)} = k\overline{y}_n$ (k=1, 2, ...), then $\lim \dot{y}_n^{(k)} = 0$ (k=1, 2, ...). By **I**, there exists an increasing sequence (n_k) of integers such that $\lim_{k \to \infty} \dot{y}_{n_k}^{(k)} = 0$. Therefore $\lim ky_{n_k} = 0$.

Let up put $\lambda_n = k$ if $n_k \leq n < n_{k+1}$. Evidently $\lambda_n \uparrow + \infty$ and $\lim_{n \to \infty} \lambda_n \overline{y}_n = \lim_{k \to \infty} k \overline{y}_{n_k} = 0$. Hence $\lim \lambda_n y_n = 0$.

Theorem 2.2. In \mathfrak{L} (o)-convergence is equivalent to relative uniform convergence.

Proof. Obviously, relative uniform convergence implies (o)-convergence. Conversely, if $y_n \to y$ (o), then by theorem 2.1 $\lambda_n |y_n - y| \to 0$ for some $\lambda_n \uparrow + \infty$. From Lemma 2.2, there exists $\{w_n\}$ such that $\lambda_n |y_n - y| < w_n$, $(w_n \downarrow 0)$. Putting $1/\lambda_n = \epsilon_n$, we have $|y_n - y| < \epsilon_n w_1(\epsilon_n \downarrow 0)$. Therefore $\{y_n\}$ converges relative uniformly to y.

Theorem 2.3. If $\lim_{k\to\infty} y_i^{(k)} = y_i$ (i=1, 2, ...), then for any $\varepsilon > 0$ there exists $y_0 \in \mathfrak{L}$ such that $|y_i^{(k)} - y_i| \leq \varepsilon y_0$ for $k \geq K(\varepsilon, 1)$.

Proof. For each *i*, there exists $y_0^{(i)}$ such that $|y_i^k - y_i| \leq \epsilon y_0^{(i)}$ for $k \geq K(\epsilon, i)$. By Lemma 2.1 $\lim_{n \to \infty} \frac{1}{n} y_0^{(i)} = 0$ (i = 1, 2, ...) and by I $\lim_{i \to \infty} \frac{1}{n_i} y_0^{(i)} = 0$ for some $\{n_i\}$ $(n_1 < n_2 < \cdots)$. Therefore $\left|\frac{1}{n_i} y_0^{(i)}\right| \leq w_i$ $(w_i \downarrow 0)$. If

we put $w_n \leq w_1 = y_0$, then for each $i \left| \frac{1}{n_i} y_0^{(i)} \right| \leq y_0$.

§ 3.

Theorem 3.1. If \mathfrak{L} is a σ -complete vector lattice for which I holds, then closure operation defined by (o)-topology satisfies Kuratowski's axiom;

- 1. if E is one point or vacuous, $\overline{E} = E$,
- 2. $\overline{E_1 \cup E_2} = \overline{E_1} \cup \overline{E_2}$,
- 3. $\overline{E} = \overline{E}$.

Proof is evident. Thus we can introduce topological convergence. Concerning the relation of topological convergence and (*)-convergence, we have

Theorem 3.2. That $\{y_n\}$ is topologically convergent to $y(y_n \rightarrow y(t))$ is equivalent to that y_n is (*)-convergent to y.

We can prove following series-theorems in our space.

Theorem 3.3. a) In order that $\sum_{i=1}^{m} y$ converges, it is necessary and sufficient that $\lim_{m,n\to\infty} (S_m - S_n) = \lim_{m,n\to\infty} \sum_{i=n+1}^{m} y_i = 0$, where $S_n = \sum_{i=1}^{n} y_i$.

b) If $\sum |y_i|$ is convergent, then $\sum y_i$ is also.

c) If $|S_i| \leq y_0$ and $\lambda_i \downarrow 0$, then $\sum_{i=1}^{\infty} \lambda_i y_i$ is convergent.

d) Whatever be y_i , there exists real numbers $\lambda_i > 0$ such that $\sum_{i=1}^{\infty} \lambda_i |y_i|$ is convergent.

e) If $\sum y_i$ is convergent, then $\sum_{i=1}^{\infty} \lambda_i |y_i|$ is convergent for some real number $\lambda_i \to \infty$.

f) If $y_i \rightarrow 0$, then there exists real numbers $\lambda_i > 0$ such that $\sum \lambda_i$ is divergent but $\sum \lambda_i y_i$ is convergent.

§ 4. We have proved in §1 that I holds in space (S). But more generally we get

Theorem 4.1. I holds for the vector lattice with the metric function ρ such that 1°, 3° in Theorem 1.2 and 2′° $y_1 \leq y_2$ implies $\rho(y_1) \leq \rho(y_2)$, 4°. $y_n \uparrow + \infty$ not implies $\lim_{n \to \infty} \lim_{p \to \infty} (y_{n+p} - y_n) = 0$.

For the proof we need a lemma.

Lemma 4.1. $y_n \rightarrow 0$ is equivalent to $\lim \rho(\sup(|y_n|, |y_{n+1}|, \dots |y_m|)) = 0.$

Proof. Necessity. $y_n \to 0$ implies $|y_n| \to 0$, therefore $\lim (\sup (|y_n|, |y_{n+1}|, ...)) = 0$. $\sup (|y_n|, |y_{n+1}|, ...)$ is monotone decreasing with n, hence by 3° $\lim_{n \to \infty} \rho(\sup (|y_n|, |y_{n+1}|, ...)) = 0$. Hence, for $n \ge N$ $\rho(\sup (|y_n|, |y_{n+1}|, ...)) < \epsilon$. Therefore, for n, m > N, $\rho(\sup (|y_n|, |y_{n+1}|, ..., |y_m|)) < \epsilon$.

Sufficiency. For any $\epsilon \ge 0$ there is an N such that $n, m \ge N$

No. 9.]

M. ORIHARA.

 $\begin{array}{l} \text{implies } \rho\left(\sup\left(|y_{n}|,|y_{n+1}|,\ldots|y_{m}|\right)\right) < \epsilon. \quad \text{Thus for } n \geq N \quad \rho\left(\sup\left(|y_{n}|,|y_{n+1}|,\ldots,|y_{m}|\right)\right) < \epsilon. \quad \text{Since } \sup\left(|y_{n}|,|y_{n+1}|,\ldots,|y_{m}|\right)\right) < \epsilon. \quad \text{Since } \sup\left(|y_{n}|,|y_{n+1}|,\ldots,|y_{m}|\right) < \epsilon. \\ |y_{n+1}|,\ldots) \text{ is monotone decreasing, there exists a limit. } \quad \text{But } \rho\left(\sup\left(|y_{n}|,|y_{n+1}|,\ldots,|y_{m}|\right)\right) = 0. \quad \text{Hence } \lim|y_{n}| \\ |y_{n+1}|,\ldots) \rightarrow 0 \quad \text{implies } \lim_{n \neq \infty} \left(\sup\left(|y_{n}|,|y_{n+1}|,\ldots,|y_{m+1}|,\ldots,|y_{m}|\right)\right) = 0. \quad \text{Hence } \lim|y_{n}| \\ = 0. \quad \text{Thus } \lim y_{n} = 0. \end{array}$

Proof of theorem. We will distinguish four cases.

1) $y_n^{(k)} \downarrow y_n \ (k \to \infty)$ and $y_n \downarrow 0 \ (n \to \infty)$ imply that there exists a sequence of elements $\{y_n^{(k_n)}\}$ tending to 0. In fact, $y_n \downarrow 0$ implies $\rho(y_n) \downarrow 0$, hence, we can find real $\epsilon_n \to 0$ such that $\rho(y_n) < \epsilon_n$. $\rho(|y_1^{(k)}|) \rightarrow \rho(y_1) < \epsilon_1$ implies $\rho(|y_1^{(k_1)}|) < \epsilon_1$ for some index k_1 . We have $\rho(|y_1^{(k_1)}|) < |y_2^{(k_1)}| > \rho(|y_1^{(k_1)}| \cup y_2) \le \rho(|y_1^{(k_1)}| \cup y_1) = \rho(|y_1^{(k_1)}|) < \epsilon_1$, and $\rho(|y_2^{(k_1)}|) \rightarrow \rho(y_2) < \epsilon_2 \ (k \to \infty)$. Hence, there exists k_2 such that $\rho(|y_1^{(k_1)}| \cup |y_2^{(k_2)}|) < \epsilon_1$, $\rho(|y_2^{(k_2)}|) < \epsilon_2$. Thus proceeding we can find $\{k_n\}$ such that $\rho(\sup(|y_n^{(k_n)}|, ..., |y_{n+p}^{(k_n+p)}|)) < \epsilon_n \ (n=1, 2, ...; p=1, 2, ...)$. Lemma 4.1 gives $\lim y_n^{(k_n)} = 0$, which is the required.

2) Let us suppose that $y_n^{(k)} \to y_n$ $(k \to \infty)$ and $y_n \downarrow 0$. By Lemma 2.1, there exists $\{w_n^{(k)}\}$ such that $|y_n^{(k)} - y_n| \leq w_n^{(k)} (w_n^{(k)} \downarrow 0 \ (k \to \infty))$. We have $|y_n^{(k)}| \leq y_n + w_n^{(k)}$, and $y_n + w_n^{(k)} \downarrow y_n \ (k \to \infty)$, $y_n \downarrow 0$. By the case 1), there exists $\{k_n\}$ such as $y_n + w_n^{(k_n)} \to 0$. Thus $|y_n^{(k_n)}| \to 0$, $y_n^{(k_n)} \to 0$.

3) Let $y_n^{(k)} \to y_n$ $(k \to \infty)$ and $y_n \to 0$. If we put $\overline{y} = \sup (y_n, y_{n+1}, \ldots)$, then $\overline{y}_n \downarrow 0$. Putting $\overline{y}_n^{(k)} = \sup (\overline{y}_n \smile |y_n^{(k)}|)$, we have $|\overline{y}_n^{(k)}| \to \overline{y}_n$ $(k \to \infty)$. Therefore, by the case 2) $|\overline{y}_n^{(k_n)}| \to 0$ $(n \to \infty)$ and then $\overline{y}_n^{(k_n)} \to 0$. Thus we have $y_n^{(k_n)} \to 0$.

4) general case is easily reduced to the case 3).

For the concrete case metric function ρ may be taken as follows.

$$\begin{split} \rho(y) &= \int_{E} \frac{|y(t)|}{1+|y(t)|} dt \quad \text{if} \quad \mathfrak{Q} \equiv (S) \\ \rho(y) &= \int_{E} |y(t)|^{p} dt \quad \text{if} \quad \mathfrak{Q} \equiv L^{p}(p \ge 1) , \\ \rho(y) &= \sum_{i=1}^{\infty} \frac{1}{2^{i}} \frac{|\gamma^{(i)}|}{1+|\gamma^{(i)}|} , \quad \text{where} \quad y = (\gamma^{(1)}, \gamma^{(2)}, \ldots) \quad \text{if} \quad \mathfrak{Q} = (s) , \\ \rho(y) &= \sum_{i=1}^{\infty} |\gamma^{(i)}|^{p}, \quad \text{where} \quad y = (\gamma^{(1)}, \gamma^{(2)}, \ldots) \quad \text{if} \quad \mathfrak{Q} = l^{p} \quad (p \ge 1) . \end{split}$$

In the case of (S), we have from theorem 2.2

Theorem 4.3. (Egoroff) In the space (S), if $\phi_n(t) \to \varphi(t)$ almost everywhere, then there exists a function $\phi_0 \in (S)$ such that $(\phi_n(t) - \varphi(t)/\varphi_0(t)) \to 0$ almost everywhere uniformly.

From Theorem 3.3, e) and f), we have Steinhaus' theorem.

Theorem 4.4. In the space (S), a) if $\sum_{n=1}^{\infty} \phi_n$ is almost everywhere

No. 9.]

b) if $\varphi_n \to 0$ a. e., then there exists real numbers $\lambda_n > 0$ such that $\sum \lambda_n$ is divergent but $\sum \lambda_n \varphi_n$ is a. e. convergent.

When I have written up this paper, Nakano's paper appeared in *Shijô-súgaku* Danwakwai, 241, where he proved that regularity axiom is equivalent to **II** and regular completeness. & is called regularly complete when $y_i, j_i \to 0$ (o) (as $i \to \infty$) implies the existence of y_0 such as $y_0 \ge y_i, j_i$ (i=1, 2, ...). This is equivalent to **I**.