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The object of this paper is to give general representation theorems
of linear operations from a Banach space to another where one is a
concrete Banach space. In this direction there are many results due to
Gelfand®, Kantorovitch-Vulich?, Kantorovitch® and Phillips®, ete. In
§8 34 their results are all generalized and simplified. Our problem is
closely connected with the integration theory. In §2 we define abstract
integrals using idea of von Neumann and Dunford®. These integrals
are used in the representation theorems. In §1 we state notations
and theorems which are used throughout the paper.

1. Notations and theorems due to Dunford.

Let X be a Banach space of numerical functions ¢(f), where ¢
ranges over an abstract set T such that

1% if ¢(t)+@(t)=¢(®) for all ¢t in T, then ¢+ =9,

2°. if ¢gy(t)=¢(t) for a constant ¢ and for all ¢in T, then cpy=¢,

8. if ¢.— ¢ and ¢,(t) > ¢*(t) for all ¢ in T, then ¢p=¢",

4°. if ¢,— ¢, then ¢,(t) > ¢(t) for all ¢ in T.

Examples of such X are ¢, I* 1<Xp=< ), C,B,AC and V?*
(1 < p< ) where V! denotes the space of all completely additive set
functions on an abstract set. In the following X denotes always such
Banach space. But in $§1-2 we need not the condition 4°. Since L
(1 £ p < =) satisfies conditions 1°-3°, the resilts in §§1-2 are applicable
to such spaces.

_Let Y be an arbitrary Banach space and /" a closed linear manifold
in Y. The linear space ¥=X(Y, I') is, by definition, the space of all
abstract functions y(.)=%(t) on T to Y such that 7f(.) lies in X for
every r in I. y(.) and ry(.) represent points in the function space
from T to Y and X, respectively.

The following theorems are due to Dunford. We prove them for
the sake of completeness.

(1.1) If y(.)e X(Y,T), then ry(.) is a linear operation on I to X.
In other words there exists a smallest non-negative mumber |y(.)I
such that

lry(Vx Zly()-lrl  @el).

1) Gelfand, Recueil Math., Moscou, 4 (1938), pp. 235-284.

2) Kantorovitch-Vulich, Comp. Math., 5 (1937), pp. 119-165.
3) Kantorovitch, Recueil Math., Moscou, 7 (1940), pp. 207-279.
4) Phillips, Trans. Amer. Math., Soc., 44 (1940), pp. 516-541.
5) Dunford, Ibidem, 44 (1936), pp. 305-356.
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Proof. If we put U(y)=ry(.), then by 1° and 2°, U is an additive
operation from I" to X. 8° shows that if y,—7* and U(r,) —¢ then
U(r*)=¢. Thus U is closed and then is continuous by a well known
theorem. _

1.2) If y(.)eX(Y,I'), rel’ and TeX, then %ry(.) is linear in
r and |Zry( )| Z1E1-Iri-Ty()

Proof. By (1.1)

[Zry() | S NE-Dry) lx S 020 70T

Let Zry(.)=#(7). then 7 is in ' by (1.2). Let %=X(Y,I') be the
space of ¥(.)e¥ such that for every ¥e X there is a ¥ such that

zry(.)=r(y) (rel).
Then we have

(1.3) A mecessary and sufficient condition that y(.)e X(Y, Y) lies
in X(Y,Y) is that for every %, in a fundamental set F < X there
exists a y, such that Zyy(.)=r() (re¥).

Proof. The necessity is ovious. To prove the sufficiency we
suppose that the condition of the theorem is satisfied. Then Zry(.)=
1(y) (reY) for every % in a dense set D <X. But for every zeX
there are Z,e D (n=1,2,8,...) such that [%,—%|—0. Since Z.yy(.)=
7Un (reI’), we have by (1.2)

1= = S0D | (B = Z) 0. ) | S 12— Zu - 1)1 0.

Therefore y,—y implies Zry(.)=7(y).
2, Abstract integrals.
Let 4 be a set in X such that for every ded

a9=( s0ap, (pex), &)

the integral being taken in the Lebesgue-Stieltjes or Riemann-Stieltjes
senses., If we put W.)E(&y(.))(r), then dy(.) is linear on I" by
(1.2). Since ¢ is given by (1), we define the abstract Stieltjes integral by

ay(.)s-jrslz(t)dy(t). @

If instead of (1) o¢ is given by the Radon intergral

sp={ vige)  (pex),
then we define
ou(.) = p(0dut) )

where y(z) is an abstract set-function. This is called abstract Radon
integral. In the same way, if we take the Hildebrandt integral in the
place of (1), we can define the abstract Hildebrandt integral. It is
obvious that the values of these integrals are contained in Y by (1.3).
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Abstract Riemann-Stieltjes integral is given by Gowurin® and
Dunford. The abstract Radon integral in the case X=V9 4=L"
(1/p+1/g=1), is given by Phillips. The abstract Hildebrandt integral
in the case 4=L~, X=L~ is given by Gowurin. Their definitions are
all constractive and then is not so simple as ours.

Our principal idea lies in defining the integral of Banach space-
valued functions by means of the integral of numerical functions in
the same domain. This permits us to derive the representations of
linear operations on a given Banach space by means of the representa-
tion of linear functionals on it.

We will state without proof some elementary properties of the
integral of abstract Lebesgue-Stieltjes for example.

(2.1) The integral L;lr(t)dy(t) is a linear operation on % to I.

In the following let 4 be a closed linear manifold in X. Then 4
is a Banach space by the norm in X.
22) If rel, 6=¢(t)ed and y(.)e X, then

[ #0druCo| 1311711901

2.3) If l¢.l—0 as |e|—0, where
() =¢(t) (tee), =0 (tee),
then sgb(t)dy(t) 18 completely additive and absolutely continuous set-

Sunction of e.

3. Representation of linear operations.

8.1) If Y is an arbitrary Banach space, then the general form
of the linear operations U(y) from Y to X is given by

U)=y(.)),
where y(.)e X(Y, Y) and | U|=l¥y(.)I.
Proof. Let %, be a functional on X such that x.¢(.)=¢(t). By 4°,
#reX. Since #U(y)=(7(U))w), we have z(U)eY. So that there
exists %(.)e X(Y, Y) such that

U ®y)=y(tly.

Thus we have U(y)=%(.)(y). It is obvious by (1.1) that #(.)(y) is
linear and | Ul=[%(.)l. Thus the theorem is proved.

If we take X=V? we have the general form of the linear
operation from Y to V? This is Phillips result. Especially taking
T=(0, 1), the linear operation from Y to L” is given by

_d-
Uly)= it y(t) @)

where %(.)e V?(Y,Y) and |Ul=l%(.)l. This is the result of Kan-
torovitch and Vulich. Thus we get almost all known representation

1) Gowurin, Fund. Math., 27 (1936), pp. 254-268.
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theorem of linear operations from arbitrary Banach space to concrete
space.

(3.2) Suppose that 4 18 a closed linear manifold in a Banach
space and 4 may be embeded into X. Then the general form of the
linear operation U(S) from 4 to an arbitrary Banach space Y s
given by

v@={ ¢ay, =9,

where y(.)e X(Y, Y) and | Ul=ly(.)I.

Proof. Put reY, 6=¢(.), then yU(S)=p¢(.), nred. Moreover
we denote #=¢(.) and », the operation which corresponds ¢(t) to ¢(.)
for a fixed ¢, that is v.#(.)=¢(t). Then by 4° v, is a linear functional.
But we have ¢(.)=7U, that is,

HO)=vrU)=0:0) ().

So that U=»U is a mapping from T to Y. But since U(3)eY, the
range of U is Y. Thus we have

U=y(.)eV(Y,Y),
and then rU(8)=rU¢=r(¢’/y(.))

that is U(3)=L¢dy.

The remaining part of the theorem is immediate.

In the case X=V79 4=L", the theorem (38.2) is proved by Phillips.
By some change of conditions we get representation theorems of linear
operations by abstract Hildebrandt integrals. From these we can
derive almost all known representation theorems of linear operations
from concrete Banach space to arbitrary Banach space. Especially
taking 4 as a space BV*? equivalent to BV, we get the representation
of operation from BV™* to an arbitrary Banach space by the abstract
Hildebrandt integral.

4. Representation of Hl-operations in a semi-ordered Banach
space.

In this section we suppose that X is a K{-space® such that

5°. if ¢=0, then ¢(t) =0 (teT).
then we have

(4.1) The general form of the Hl-operation from an arbitrary
Banach space to X 8 given by

U@=%(.)w), l¥@®leXx, [Ul=ly®I,

where |U| denotes the abstract norm.

Proof. By HP<H! and (81) we get U()=%(.)(») and
¥.)eX(Y,Y). Now the necessary and sufficient condition that
UeH} is that there exists x, such that

1) Hildebrandt, Bull. Amer. Math. Soc., 44 (1938), p. 75.
2) Kantorovitch, loc. cit.
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sup (U @) /1y 1)=2.
By sup | U(y) |/lyl= sup |5(@&) @) | [ly1=15@®1,
lyl=1 lyis1

we get |7(t)le X. The remaining part is obvious.
If X=V7(¢g>1) or AC, then

UW)=9(.Jw), l¥(DleV? or AC, |Ul=I¥()I.
When Y is locally weakly. compact, then we have

7= w0t

where the integral is in the Bochner sense. Thus we have
(4.2) When Y s locally weakly compact, the general form of the
HY-operation U from Y to LP (p =1) is given by

U=y, ly@®)lelr (p=1), |U|=I7@)].
Especially if Y=L° (1<<p<<), then the general form of the
H}-operation U from L° to L? is given by

Uw) =j K(t, sy(s)ds

where [ [[ [ 129 I‘dS]%dt]"l’_=u|U|u< o (;+ 1),

The special case of T=(0,1) was proved by Kantorovitch and Vulich.
By the same idea we can prove a theorem corresponding to (3.2).
In this case we can also derive (4.2) as a special case.

1) Phillips, loc. cit. /NER, ZE#K ER%E5€, 235 (B 17 &), pp. 1014-1018.



