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16. On Group Rings of Topological Groups.

By Kenkichi IWASAWA.
Mathematical Institute, Tokyo Imperial University.

(Comm. by T. TAKA(]I, M.I.),., Feb. 12, 1944.)

1. Let G be a locally compact topological group, satisfying the
second axiom of countability and / a left invariant Haar measure on
G. We denote as usual by L*’(G) (p 1) the set of all z-measurable
functions x(g) of G with finite

For arbitrary (g) e L(G), y(g) e L(G) and

(1) z(g) x y(g) .,I ax(h)y(h-lg)/(dh)"
we have

Defining the multiplication by (1) and putting

the intersection L">(G) of L(G) and L(G)thus becomes a non-
commutative nomed ring’. But, generally speaking, L("(G) has not
a unit element. Adjoining therefore formally the unit e, I.E. Segal
considered the set of all

2e +x(g) , complex number, x(g) e L(’’ )(G),
and called it the group ring R(’)(G) of G). But we would rather
prefer to call L(’ )(G) itself the group ring of G. We shall give in this
paper certain close relations between G and L(’)(G), some of which
are generalizations of the results of I.E. Segal.

2. We consider representations of G and L(’)(G), i.e. homo-
morphic mappings of G and L(’ )(G) into matrices, whose components
are complex numbers).

Our main theorem is then"
Theorem 1. There is a one-to-one correspondence between con-

tinuous) representations of L(’ )(G) and bounded continuous representa-
tions of G in the following sense"

i) For a given continuous representation x(g)--, T(x) of L(’)(G),
there corresponds uniquely a bounded continuous representation a-D(a)
of G, so that it holds

1) For normed rings cf. I. Gelfand Normierte Ringe, Rec. Math., 51 (1941) 37-58.
2) I.E. Segal: The group ring of a locally compact group, I, Proc. Nat. Acad.

Sci., U.S.A. 27 (1940).
3) For the representation of G, we do not require that the unit of G corresponds

to the unit matrix.
4) The topology in L(1,)(G) is of course given by the norm IIxll in (3).
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(4) T(x) Ix(g)D(g)z(dg))
for all x(g) in L(’’)(G). We denote this representation of G by DT(a).

ii) Conversely, if a D(a) is an arbitrary bounded continuous re-
presentation of G and if we define T(x) by (4), the mapping x(g)--- T(x)
gives a continuous representation for x(g) in L(’’)(G). We denote this
representation by TD(X).

iii) i) and ii) give mutually inverse correspondences: if D=DT,,
then T= TD, and if T= TD, then D.=DT.

iv) Equivalent representations correspond to each other:if
AT(x)A-= T(x), then ADT,(a)A-I=DT(a) and if BD(a)B-=D(a),
then BTD,(X)B-1- TD(X,).

From Theorem 1 follow immediately some corollaries: Let
a D(a) be a bounded measurable representation of G. If we put

T(x) IGx(g)D(g)/(dg)
z(g)- T(x) gives, as before, a continuous representation of L("’)(G).
By Theorem 1 we have thus T(x)=TD,(X) with some bounded con-
tinuous representation D,(a) of G and hence D(a)=D(a). Thus

Theorem 2. Any bounded measurable representation of G is
continuous.

In a similar way we obtain by a simple calculation the following
Theorem 3. If G is locally compact, but not compact, then there

is no representation of G belonging to L’(G) (p 1) except the zero
representation, which maps every element of G to the zero matrix.
On the other hand if G is compact, any representation belonging to
L’(G) (p >= 1) is bounded and continuous.

Now, as a bounded representation of G is always completely
reducible, it follows from Theorem 1, iv) that a continuous representa-
tion of L("’)(G) is completely reducible. But the converse is also true.
It holds namely

Theorem 4. A representation T(x) of L(’’)(G) is continuous if
and only if it is completely reducible. Especially a irreducible repre-
sentation of L("V)(G) is always continuous.

This theorem is equivalent to the following
Theorem 5. Let M be a two-sided ideal of L(")(G), such that

the rest class ring L(’)/M is of finite dimension. L(’/M is then
semi-simple if and only if M is closed in L("(G). Especially a
maximal ideal M is always closed in L(’,(G).

These theorems can be regarded as a generalization of the com-
plete reducibility of the group ring of a finite group.

The above mentioned relation between ideals and representations
of L("(G) is explicitly given by

Theorem 6. Let {D} be a class of equivalent bounded continuous

5) The right-hand side means a matrix with (i,j)-component I (g)di.i(g),u(dg),
G

where D(a)=
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irreducible representations of G and D(a) be a representant of it.
Then all functions x(g) of La’’(G) satisfying

x(g)D(g)l(dg)
O,

constitute a maximal two-sided ideal M(D) in L(’)(G). {D}-, M(D)
thus gives a one-to-one correspondence between all classes of equivalent
bounded continuous irreducible representations of G and all maximal
two-sided ideals M of L(’’)(G), for which L(’’)/M is of finite
dimension.

If we define the classes of (not necessarily irreducible)representa-
tions of G suitably, then the result of Theorem 6 can be extended to
those classes of representations of G and all closed two-sided ideals
M of L(’)(G), for which L(’)/M is of finite dimension. It follows
then also, that for L(’)(G), p= 1, 2, the ideals of that kind corre-
spond one-to-one to each other.

3. In order to establish corresponding theorems for Segal’s
group ring R(’) (G), we have only to prove the following

Lemma. Let M be a two-sided ideal in L(’v)(G) such that the
rest class ring L(" ’)/M is of finite dimension and has a unit element.
Then a two-sided ideal M’ of R(’’)(G) can be uniquely determined, so
that it holds

M=M’ L(’ )(G), R(’ )(G)= M’ L(’ )(G).

From this lemma it follows that closed ideals in R(’’)(G) which
are not contained in L(’’)(G) and closed ideals in L(’ )(G) correspond
one-to-one to each other. Making use of this fact and Theorem 1
we obtain

Theorem 7. For a continuous representation6) -- T() of R(I’)(G)
there is a continuous bounded representation a--, D(a) of G, so that
for any =2e+x(g) in R(I’)(G) it holds

(5) T(8)= T(le+x(g))= 2D(1)+ Ivx(g)D(g)l(dg)V’.
Conversely, for any continuous bounded representation a-, D(a) of G,
T() in (5) gives a continuous representation -- T() of R(’*(G) and
thus continuous representations of R(’*(G) and continuous bounded
representations of G correspond one-to-one to each other.

We can also prove similar theorems to Theorems 4, 5, 6. Espe-
cially a one-to-one correspondence is to be established between all
classes of irreducible bounded continuous representations of G and all
maximal ideals M’ = L(’ (G) of hx’ )(G), for which R(’ ’/M’ is of
finite dimensions.

4. We now extend our Theorem 1 to representations of G and
L(t’)(G) by bounded operators in a Hilbert space (C). Let B be the

6) We define the norm in R(1.’)(G)by IIll=ile+x(g)ll=lll+llxll and say
tinuous" in the sense of this norm.

7) D(1) is the matrix corresponding to the unit of G.
8) Cf. Segal, 1. c. 2).

"con-
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ring of all bounded operators in 22. A representation a-->D(a)(D(a)eB)
of G in B is called a "proper" representation, when it holds D(1)-E,
where 1 means the unit in G and E is the unit operator in B. It is
called bounden, if there exists a constant C so that

I11D(a) Ill C, for all a e G)

On the other hand we call a representation x(g)--> T(x)(T(x) e B) of
L(’)(G) in B "proper", if T(x)f’--O(fe22) for all x(g)eL(’)(G)
implies f=O, and we call it "continuous ", if there is a constant C’
so that

III T(x)lll C’llxll, for all x(g)eL(’’)(G)).

We can now prove the following
Theorem 8. There is a one-to-one correspondence between con-

tinuous proper representations of L(’’)(G) in B and bounded measur-
ablem proper representations of G in B in the following sense"

i) For such a representation x(g)--> T(x) of L(’)(G) in B, there
is a bounded measurable proper representation a--)D(a) of G, so that

(6) T(x) IGx(g)D(g)/(dg)
for all x(g) in L(’)(G). Such D(a) is uniquely determined by T(x).

ii) Conversely, if a--, D(a) is such a representation of G, T(x)
in (6) gives a continuous proper representation of L(’)(G) in B.

iii) Above correspondences are mutually inverse.
iv) Equivalent representations correspond to each other).
If the measure Z is not only left invariant, but also right in-

variant, then we can obtain some more precise results. We can thus
prove for example the following theorem.

Theorem 9. If G has an invariant Haar measure, then measurable
unitary representations of G in B are all strongly continuousm.

Detailed proofs of above theorems will appear elsewhere. They
need some considerations on non-commutative normed rings) and rings
of operators in a Hilbert space, as will be also discussed there
precisely).

9) III A Ill means the bound of the operator A.
10) Thus we consider in B the uniform topology.
11) That is to say, that (D(g,f) is z-measurable for any rift in .
12) (6) means (T(x)f,f)=t’(7x(g)(D(glf,f)z(dg)_ for any rift in .
13) Cf. Theorem 1, iii), iv).
14) Cf. K. Kodaira: (ber die Gruppen der messbaren Abbildungen, Proc. 17

(19al), 18-23.
15) Some of the theorems, obtained by I. Gelfand, concerning commutative normed

rings can be transferred to our non-commutative case.
16) Cf. also author’s note in Zenkoku Sijo Sugaku Danwakai, 24{ (1942), 1522-

1555, 251 (1943), 167-186.


