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96. Relations between Measure and Topology
in some Boolean Space.

By Yoshimiti MIBU.
Mathematical Institute, Nagoya Imperial University.

(Comm. by T. TAKAGI, M.I.A., July 12, 1944.)

Let /2 be a bicompact Hausdorff space the closure of whose open
set is open. We assume that the class of all the closed-open sets
constitutes the base of 2. is a finitely additive class which contains
.Q and the empty set (C). Let there be defined on ( a Jordan measure
re(E) with the following two conditions"

1 m(2)=l, m(E)=O if and only if E=(C).

2 limm(E)=m(( E)) for any ascending sequence {E} of sets

The purpose of the present note is to discuss the relations between
measure and topology in .2. Our main result is resumed in the
theorems 10, 11 and 13 below.

Theorem 1. We have

n=l

for every sequence (E} of sets e, .d the equality holds good if
and only if E are mutually disjoint. In particular, we have

m(E ) =m(U
n=l n=l

if U Eei!i. Thus the Jordan measure re(E) is countably additive

on C.
Definition 1. (of outer measure m*). For any set A 12, m*(A)

denotes the infimum of re(E) where E e , EA
Theorem

(ii)

(iii)

(iv)

m*(A)m*(B) if AB
m*(A)=m(A) if Ae

m*(A+B) m*(A)/m*(B)

m*(A)=m*(Aa)

Definition 2. (of inner measure m.). For any set A 12, m.(A)
denotes the supremum of re(E) where E e , E A.

Theorem 3.

1) Aa, Ac and Ai respectively denote the closure, the complement and the interior
of A.
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)’ m.(a) m,(B) if A B

(ii)’ m,(A)=m(A) if A e (

(iv)’ m,(A) =m.(A )

Theorem 4. m*(A) m,(A)

Lemma 1. m*(A)+m,(A)-- 1.

Proof. For every > 0, there exists a set Ee such that E A
and m*(A)+:>m(E). E and E both belongs to and thus we
have m(E)+m(E)=m($2) 1. We have m,(A) m(E) from E A
and thus m*(A)+e > m(E)=l-m(E) 1-m.(A). Therefore m*(A)
+m.(A) 1.

Similarly, there exists, for every > 0, a set Ee such that
E A" and m.(A)- < re(E). From this we obtain m.(A)- < re(E)
=l-m(E) 1-m*(A) as above, and so

m*(A)+m,(A)l Q.E.D.

Lemma 2. For .any set A there exists an open set H A such
that m.(A)=m(H) and A-H does not contain open set (C).

Proof. From the definition of m.(A), there exists a sequence (E}
of sets e , E, A (n= l, 2, ...) such that Sup m(E,)=m.(A). With-

out losing the generality we may assume that the sequence (E.} is

ascending. Put H= U E, then we have, by 2, m(H)=lim m(E)

=m,(A). His open and A. If an open set B is contained
in A-H, then there exists, by 1, a set Ee with E B re(E) O.
Thus we have

m(E,+E)=m(E)/m(E) > m,(A)

for sufficiently large n, contrary to the definition of m.(A) and E.
+EA.

Theorem 5. m*(G) =m,(G) if G is open,

Proof. There exists, by lemma 2, an open set H G such that
m(H")=m,(G) and G-H does not contain open set :k . We have
HG. Let us assume that G-H(C), then HG, since
HG implies the relation GH=H contrary to the assump-
tion G-HD. Thus the open set GH is not void. This
contradicts to the fact that G-H does not contain open set (C).
Therefore H=G and thus we have, by lemma 2 and theorem 2

m,(G) m(H ) m(G m*(G)

Theorem 6. The class of all sets A such that m*(A)=m,(A)
is a countably additive class. Hence, by theorem 5, contains all
Borel sets

Proof. we have to show (i) and (ii)"
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Proof of (i).

Ae if Ae.

U A.e if Ae (n=1,2,...).

We see, by lemma 1, that m*(A)=m.(A) implies
m.(A*)= 1-m*(A)= 1-m.(A)=m*(A).

For the proof of (ii), we need the following two lemmas.
Lemma 3. If m*(A)=m.(A), then we have m*(A-A)=O and

hence m*(A-A)=O, m*(A-A)=O.
Proof. For every > 0, there exists Ee(, E.e such that

E A, E A and m(E) < m*(A)+, m(E) > m.(A)-. Hence
we have m*(A-A) m(E-E)=(E)-m(E) m*(A)-m,(A)+2
=2e, by theorem 2 and 3. Q.E.D.

Lemma 4. m*(UA)=0 if m*(A)=0 (n=1,2,...).

Proof follows from the definition of m* and theorem 1.
Q.E.D.

Proof of (ii) of theorem 6. We have

m*(U A)=m*(U A+ U (A-A))
n-1 n=I

By lemma 3 and 4, m* A, A) 0 and hence m* U A) m* U A)
n=1 n-1

which is =m.(U A) by theorem 5. Therefore m*(U A)m*(U
n=l n-1

Theorem 7. m*(A)=O implies that A is non-dense, and conversely
m*(A) 0 if A is non-dense.

Proof. We have, by theorem 2, m*(A)=m*(A)=O. Accordingly
A does not contain open set (C), and so A is non-dense. Next let
A be non-dense, then we have A=(C). Thus, by theorem 2, 3, and 6
m*(A)=m*(A m.(A ) m.(A m.((C)) O.

Definition 3. A set A will be called measurable with respect to
the outer measure m*, if m*(B)=m*(B A)+m*(B A) for every
set B.

Lemma 5. Let A and A. be respectively contained in G and G.
where G are mutually disjoint open sets, then

m*(A/A) m*(A)/m*(A)

Proof. G G=(C) implies G

__
G. So we have G G=G

and hence G? G=(C). Since, by the assumption, the closure of an
open set is open, we obtain GG= by the same argument.
Thus we may assume that G1 and G. both e and hence m*(A.+A)
=m*(A)/m*(A.).

Theorem 8. If m*(A) m.(A) viz. A e , then A is measurable
with respect to m*.

Proof. m*(SA) / m*(S A) m*(S A
m*(BA+B(A-A)). By lemma 3, B(A-A) and S
(A-A) are of outer measure zero. Thus m*(BA)+m*(BA)
=m*(BA)+m*(BA). As A and A are open we have,
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by lemma 5, m*(B rA)+m*(B rA)=m*(Br(A+A)) m*(B).
Therefore, by theorem 2, m*(B A)+m*(B A)=m*(B).

Theorem 9. If A is measurable with respect to m*, then m*(A)
=m*(A) viz. A e ,

Proof. We have m*(B)=m*(Br A)+m*(B r A) for any B.
Hence, by putting B=.C2, l=m*(A)+m*(A). Thus, by lemma 1, we
have m*(A)=m,(A).

Theorem 10. The following conditions are mutually equivalent
in

) A is non-dense.
(ii) A is of first category.

(iii) A is of measure zero.

Proof is obtained from theorem 7 and lemma 4.
Theorem 11. The following conditions are mutually equivalent

in 9.

(i) m*(A)=m,(A).
(ii)
(iii) A is measurable with respect to m*.
(iv) A enjoys Baire’s property viz. there exists an open .set G such

that A G-A r G is of first category.

Proof. The implication (i) (iii) is assured by theorem 8 and 9.
Since A=A, we have A e and hence Aai A. A also e (
by the definition of . Thus if m*(A)=m.(A), then m(A)=m.(A)
t, (Aa) * (Aa) qt* (A) m. (A) m. (Ai) m*(Ai) m*(Aia)

m(A), and hence A=A by 1. Therefore (i)implies (ii). Con-
versely let A--Aa, then m(A)=m*(A)=m.(A)=m.(A)--m(A)
=m(A)=m*(A)=m*(A)=m.(A)=m.(A), by theorem 2, 3 and 6.
Hence (ii) implies (i). By theorem 10 and lemma 3, we see that (i)
implies (iv). Since a set of first category is of measure zero by
theorem 10, we see that (iv) implies (iii) and hence (i).

Corollary. The totality of measurable functions coincides with the
totality of functions having Baires property.

Theorem 12. m* is an outer measure in the sense of Caratheodory.
Proof. A B implies m*(A) m*(B) by theorem 2. By theorem

theorem 1 and the definition of m*, we see that m*(U A,) , m*(A).
Thus it will be sufficient to show that m*(A+B)=m*(A)+m*(B) if
ArB=(C). Being bicompact, /2 is normal and so there exist two
open sets G, G. such that G A, G B, and GrG= (C). Thus
by lemma 5, we have m*(A+B)=m*(A)+m*(B).

Theorem 13. For functions f(x) defined on /2 the following con-
ditions are mutually equivalent.

(i) f(x) is a mesaurable function.

(ii) f(x) is a function having Baire’s property.
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(iii) There exists a continuous function (which may take the value
:t: cD), coinciding with f(x) except on a set of measure zero.

(iv) The set of points of discontinuity of f(x) is of measure zero.

Proof. The equivalence of (i) and (ii) is already proved in the
corollary of theorem 11. The equivalence of (ii) and (iii) is proved
by T. Ogasawara). Next let there exist a continuous function
differing from f(x) only on a set of measure zero. Thus there exists,
for every :> 0, a set Ee(!i such that re(E)<: and f(x)=g(x)on E.
Hence f(x) is continuous on the closed open set E. Since was
arbitrary, we obtain (iv). Conversely let the set A of discontinuity
of f(x) satisfy m*(A)=0, then f(x) is continuous on Ae. For any
a, the set B {z e/2; f() > a} is {z e A; f(z) > a} -t- {x e A; f(x) >
As f(z) is continuous on A we have {x e A; f() > a} A G with
some open set G of 2, and hence A G e o. Moreover {z e A; f(n) >
is of measure zero with A. Therefore B e , proving that (iv) im-
plies (i).

1) If f(xo)-- =l: , there exists, for every a an open set Ga x0 such that f(x) a
on Ga.

2) I*, 16 , 9 , 412 i.


