No. 7.]

95. Equivalence of Two Topologies of Abelian Groups.

By Kôsaku Yosida and Turane Iwamura. Mathematical Institute, Nagoya Imperial University. (Comm. by T. Takagi, M.I.A., July 12, 1944.)

Let G be a locally compact (=bicompact), separable abelian group and let X be the totality of continuous characters¹⁾ $\chi(g)$ of G. It is well known²⁾ that X is also a locally compact, separable abelian group by the multiplication

$$\chi_1\chi_2(g) = \chi_1(g)\chi_2(g)$$

and by Pontrjagin's topology induced from the (closed) neighbourhood:

$$U(\chi_1) = \{\chi; \sup_{g \in G_0} |\chi(g) - \chi_1(g)| \leq \varepsilon, \quad G_0 = \text{compact subset of } G\}.$$

X also constitutes a locally compact, separable topological space \widetilde{X} by the topology induced from the (closed) neighbourhood:

$$\widetilde{V}(\chi_1) = \left\{ \chi; \left| \int_G x_i(g) \chi(g) dg - \int_G x_i(g) \chi_1(g) dg \right| \leq \varepsilon, \quad i = 1, 2, ..., n \right\}$$

where $x_i(g) \in L_1(G)$ viz. $x_i(g)$ denote measurable functions integrable over G with respect to Haar's invariant measure dg on G. The latter topology is introduced by I. Gelfand and D. Raikov³⁾, and its equivalence to Pontrjagin's topology plays a fundamental rôle in the ring-theoretic treatment and extension of the classical Fourier analysis based upon the theory of normed ring⁴⁾. However the proof of the equivalence is, so far as we know, not published by the Russian school, though stated and used by them repeatedly⁵⁾.

The purpose of the present note is i): to give it a proof and ii) to show that the character group is a topological group in Gelfand-Raikov's topology even when G is not separable. For the purpose we make use of the following

Lemma. For any χ_2 , the mapping

$$\chi \rightarrow \chi_{\nu}\chi$$

¹⁾ A continuous character of G is a continuous homomorphic mapping of G in the topological group of rotations of a circle.

²⁾ L. Pontrjagin: Topological group, Princeton (1939), 127.

³⁾ C. R. URSS, 28, 3 (1940).

⁴⁾ D. Raikov: C. R. URSS, **28**, 4 (1940). M. Krein: C. R. URSS, **30**, 6 (1941). D. Raikov: C. R. URSS, **30**, 7 (1941). K. Yosida: Proc. **20** (1944), 269. The author (Yosida) wishes to withdraw the §3 of this note, since the Lemma 2 is valid for $z \in L_1(G)$ only and thus the arguments in §3 is insufficient. A complete proof and the fact that Bochner-Raikov's theorem may be derived from Plancherel's theorem will be published elsewhere.—During the proof, Y. Kawada kindly communicated that 3° may be obtained from Bochner-Raikov's theorem.

⁵⁾ H. Anzai kindly communicated M. Fukamiya's unpublished proof of the equivalence, which is entirely different from ours.

of \widetilde{X} on \widetilde{X} is a topological one.

Proof. The inclusion $\chi \in \widetilde{U}(\chi_1)$ is equivalent to the inclusion $\chi_2 \chi \in \widetilde{U}(\chi_2 \chi_1)$ where

$$\left\{ \begin{array}{l} U(\chi_{2}\chi_{1}) = \left\{ \chi' \; ; \left| \int_{G} x'_{i}(g)\chi'(g)dg - \int_{G} x'_{i}(g)\chi_{2}\chi_{1}(g)dg \right| \leq \varepsilon \; , \quad i = 1, 2, ..., n \right\} \\ x'_{i}(g) = x_{i}(g)\chi_{2}^{-1}(g) \; , \qquad \chi_{2}^{-1}(g) = \chi_{2}(-g) \end{array} \right.$$
 Q. E. D.

Proof of i). It is evident that the mapping

$$(1) X \ni \chi \to \chi \in \widetilde{X}$$

is continuous. Hence, by the lemma, we have only to show that for any neighbourhood $U(\chi_0)$ in X of the unit-character $\chi_0(\chi_0(g) \equiv 1)$ there exists a neighbourhood $\widetilde{V}(\chi_0)$ in \widetilde{X} of χ_0 satisfying $U(\chi_0) \geq \widetilde{V}(\chi_0)$ as subset (without topology) of X.

Let $W(\chi_0)$ be a compact and symmetric neighbourhood in X of χ_0 :

(2)
$$W(\chi_0) = W(\chi_0)^{-1} = \{\chi^{-1}; \chi \in W(\chi_0)\}$$

such that

(3)
$$U(\chi_0) \ge W(\chi_0)^2 = \{\chi_a \chi_\beta; \chi_a, \chi_\beta \in W(\chi_0)\}.$$

Since X is separable there exists an enumerable sequence $\{\chi_i\} \subseteq X$ such that

$$X = \bigcup_{i=1}^{\infty} \chi_i W(\chi_0),$$

where

(4)
$$\chi_i W(\chi_0) = \{ \chi ; \chi = \chi_i \chi', \chi' \in W(\chi_0) \}.$$

By the continuity of the mapping (1), the image $\chi_i W(\chi_0)$ in \widetilde{X} of the compact set $\chi_i W(\chi_0)$ in X is also a compact set of \widetilde{X} . \widetilde{X} being complete as a locally compact space, at least one compact set $\chi_i W(\chi_0)$ contains a neighbourhood $\widetilde{V}_1(\chi_a)$. This results from the fact that a complete space is not of Baire's first category. Hence, by the lemma, the neighbourhood $\chi_a^{-1}\chi_i W(\chi_0)$ in \widetilde{X} contains a neighbourhood $\widetilde{V}_1(\chi_0)$ in \widetilde{X} of χ_0 . Thus there exists χ such that the neighbourhood $\chi \widetilde{W}(\chi_0)$ in \widetilde{X} contains a neighbourhood in \widetilde{X} of χ_0 . Hence $\chi \widetilde{W}(\chi_0) \ni \chi_0$ and thus $\widetilde{W}(\chi_0) \ni \chi^{-1}$, $\widetilde{W}(\chi_0) \ni \chi$ by (2). Therefore, by (3), there exists a neighbourhood $\widetilde{V}(\chi_0)$ in \widetilde{X} of χ_0 which satisfies

$$U(\chi_0) \ge W(\chi_0)^2 \ge \widetilde{V}(\chi_0)$$
, as subsets (without topology) of X .
Q. E. D.

Remark. The separability of G is only used in (4). Hence i) holds good if, for example, X is compact or connected.

Proof of *ii*). Since $x(g) \in L_1(G)$ implies $y(g) = x(-g) \in L_1(G)$ and v. v., a subset \widetilde{V} of \widetilde{X} is a neighbourhood $\chi \in \widetilde{X}$ if and only if V^{-1} is a neighbourhood of χ^{-1} . Thus χ^{-1} is a continuous function of χ .

It remains to show that $\chi_1\chi_2$ is a continuous function of two variables χ_1, χ_2 . By the lemma and by the commutativity of \widetilde{X} , it is sufficient to prove that for every neighbourhood \widetilde{V} of the unit-character χ_0 there exists a neighbourhood \widetilde{W} of χ_0 such that $\widetilde{W}^2 \subseteq \widetilde{V}$.

A generic neighbourhood of χ_0 is the intersection of a finite number of sets of the form

$$\widetilde{U}(x, \epsilon) = \left\{ \chi ; \left| \int_{G} x(g) \chi_{0}(g) dg - \int_{G} x(g) \chi(g) dg \right| < \epsilon \right\},$$

where $\varepsilon > 0$ and $x(g) \in L_1(G)$. For any such ε , x there exists a step function $y(g) \in L_1(G)$ satisfying $\|x-y\| < \varepsilon/3$. Since this inequality implies that for every $\chi \in \widetilde{X} \left| \int_G x(g) \chi(g) dg - \int_G y(g) \chi(g) dg \right| < \varepsilon/3$, we have $\widetilde{U}(y, \varepsilon/3) \subseteq \widetilde{U}(x, \varepsilon)$. We may therefore take as x(g) only step functions from $L_1(G)$, and so only characteristic functions x_E of measurable subsets E of G with $0 < m(E) < \infty$ (m indicates Haar's measure). Put

$$egin{aligned} \widetilde{U}(E,arepsilon) = & \left\{ arepsilon ; \left| \int_G x_E(g) \chi_0(g) dg - \int_G x_E(g) \chi(g) dg \right| < arepsilon
ight\} \\ = & \left\{ arepsilon ; \left| \int_E (1 - \chi(g)) dg \right| < arepsilon
ight\}. \end{aligned}$$

Let $\epsilon'>0$ and put $D(\chi,E,\epsilon')=\{g\,;\,g\in E,\,|1-\chi(g)|>\epsilon'\}\,$; this is a measurable set with finite measure. It is easily seen that, if $\epsilon'<\epsilon$ and if $\epsilon',\,\delta>0$ are sufficiently small, the set $V(E,\epsilon',\delta)=\{\chi\,;\,m\big(D(\chi,E,\epsilon')\big)<\delta\}$ is contained in $\widetilde U(E,\epsilon)$. Moreover, we have always $V(E,\epsilon'/2,\delta)^2\subseteq V(E,\epsilon',\delta)$. Hence it is sufficient to show that for any $\epsilon',\delta>0$ there exists an $\epsilon>0$ such that $\widetilde U(E,\epsilon)\subseteq V(E,\epsilon',\delta')$. Such an ϵ may be given, as will be shown below, by $\epsilon=\epsilon''\delta$, where $\epsilon''=\inf_{|1-\chi(g)|>\epsilon'}(1-\Re \chi(g))$, \Re indicating the real part of a complex number. Since $|\chi(g)|=1$, we have $1-\Re \chi(g)\geqq 0$ everywhere and $\epsilon''>0$.

Suppose $\chi \in \widetilde{U}(E, \varepsilon)$, i. e. $\left| \int_{E} (1-\chi(g)) dg \right| < \varepsilon$. Then $D(\chi, E, \varepsilon')$ coincides with $C = \{g : g \in E, 1-\Re\chi(g) > \varepsilon''\}$. Since $\left| \int_{E} (1-\chi(g)) dg \right|^{2} = \left\{ \int_{E} (1-\Re\chi(g)) dg \right\}^{2} + \left\{ \int_{E} \Im\chi(g) dg \right\}^{2}$, where \Im indicates the imaginary part of a complex number, we have

$$\epsilon > \int_{E} (1 - \Re \chi(g)) dg \ge \int_{C} (1 - \Re \chi(g)) dg \ge \epsilon'' m(C) = \epsilon'' m(D(\chi, E, \epsilon')).$$

Hence $m(D(\chi, E, \varepsilon')) < \varepsilon/\varepsilon'' = \delta$, i. e. $\chi \in V(E, \varepsilon', \delta)$. Thus we have shown $\widetilde{U}(E, \varepsilon) \subseteq V(E, \varepsilon', \delta)$, and the proof is complete.