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Tue’s and Siegel’s theorems are very important and significant in
the recent development of the diophantine analysis. We see that the
greater part of these theories will hold good even if algebraic func-
tions are considered, instead of algebraic numbers. The purpose of
this paper is to treat the outline of this analogy. Details will be
discussed in another paper.

We consider an algebraic function (t) with elements of a corpus
/ as coefficients. The Laurent’s expansion of (t) at infinity is of
the form

o(t) -’ a at +a_-. -I- ao+-a- -F---/a-O.
Now we take a fixed real number e > 1 and put

((t)) =e or () = 0, (0)=0.

Then gives an evaluation (Bewertung) of the corpus of algebraic
functions re(t), such that

(1) (W,(t). w,($))= tP(w,(t)).
(2) =<

In (2) the inequality happens eventually in the case
p(.(t)). If we denote the integral part at/a_t--t-...+ao of
(t) with the notation [o(t)], we can define the continued fraction
[Ao(t), A(t), A2(t), ...] of an algebraic function o(t), putting

Ao(t) [o(t)], ,(t) Ao(t)-F

[,(t)]=A(t) o(t)= A(t)+
=A,(O,

1
(t)

1
,(t)

Then the fundamental theory of continued fraction can be applied
without modification.

Theorem 1. (Lagrange). The necessary and sufficient condition
that the continued fraction of (t) be recurrent is as follows:

1 ,o(t) satisfies an irreducible quadratic equation with integral
coefficients

a(t)o+b(t)o+c(t)= 0
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2 The diophantine equation x2-d(t)y= 1, d(t)=b(t)-4a(t)c(t) has
at least one integral solution x(t), y(t) besides the trivial solutions
x= :]:1, y=O.

Theorem 2. (Lagrange). If a diophantine equation a(t)x + b(t)xy+
c(t)y=k(t) has at least one integral solution, it has infinitely many
solutions, when and only when the corresponding diophantine equation
x2-d(t)y=l, d(t)=b(t)-4a(t)c(t) has non-trivial solutions.

We must remark that a Fermat’s equation x2-d(t)y= 1 does not
always have non-trivial integral solutions, which is not the case in
Fermat’s equations of numbers. This discordance comes from the
following fact: The number of integers, whose absolute values are
less than a positive constant M, is finite, while that of polynomials
which satisfy (p(t))M is not always finite. Therefore, this
discordance vanishes when /2 is a finite corpus, namely a Galois field.

If an algebraic function 7 satisfies the irreducible equation
ao(t)+al(t)h-1...+ah(t)=O, we call the number H(y)--max (a(t))

i-O,1,2...h

the height of 7. Now we introduce the several notations:
K: a fixed corpus of algebraic functions;
7" a primitive function of K;

" an algebraic function of the n-th degree, which satisfies
an irreducible equation of the d-th degree in K.

With the help of these notations, we can state the principal theorems
which are analogous to Siegel’s1).

Theorem 3. (Siegel). s be a positive integer K d, and be any
positive number. Then we can choose a positive number M, which
depend on 5, t? and K, so that the inequality

1(-) >

holds for any primitive function y of the height H(7):> M..
Theorem I. (Siegel). s be a positive integer <: n. Then we can

choose a positive number M, which depends on $,h and 8, so that
the inequality

1

H(7)a(--+’)
holds for any algebraic function of the h-th degree, whose height
H(7) is greater than M.

The next lemma 1 plays the most important part in the develop-
ment of the theory.

Lemma 1, Let P be a corpus of algebraic functions, an alge-
braic integral function, which is of the d-th degree with respect to
P and s a positive integer <: d and 0 any positive number. Further,
let m denote the integral part of -(---lr, where r is any posi-

\ /s+l

1) Siegel, C.L. Approximation algebraischer Zahlen. Math. Z. 10 (1921), 173-213.
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tive integer. Then, if and P have .no branch point at infinity, there
exists a polynomial R(, y), which satisfies the following conditions"

(1) R(r,,y) has the form -:,,b.(t)xy, where b.(t) are func-
a-0

tions of P.
(2) If we put R(, y)- 1 OR(, Y), then R(e, e)=0 for

0, 1,2, ..., r-1.
Therefore, R(,e) can put in the form

where s(x) is a polynomial of .
(3) We can choose a positive number c propeEy, which depends on

$, P, and is independent of r,s, so that the inequality (b.($))<
holds for any b.($).

Siegel proved this lemma 1 with the help of the soall
"Dirichlet’s principle" (Dirichletsches Schubfachschlusz). Unfounately
this principle is helpless i our case; we use the following lemma 2
instead of Dirichlet’s principle.

S be a set of polynomials Q(, y) of , y in P, which is a linear
modul of finite rank with respt to the corpus of numbers. S
the subset of S, which consists of all elements Q(, y) of S with the
condition (V(e, e)) e. Then & is a linear modul of finite rank

Lemma Z. Between the ranks of S and S-, there exists the
relation m m_+1 or

By lemma 2, the proof of the lemma 1 runs quite paralell as in
the Siegel’s paper.

We assume in the lemma 1 that and P have no branch point
at infinity. In order to remove this restriction, it is sufficient to put
t=u, choosing a positive inger q properly. The point at infinity is
no more a branch point of or P, if we consider u as the independent
variable instead of .

From Siegel’s theorem, we n deduce the extremely interesting
theorem which corresponds to Thue’s theorem. The method of this
deduction is quite analogous to the case of algebraic numbers.

Theorem 5. (Thue). A(x, y)=ao(t)+a(t)x-y+...+a(t)y be an
irreducible homogeneous form of x, y with polynomials Co(t), a($), a($)
as coefficients. If n 3, any solution (),y() of the indeterminate
equation A(,y)=d(), where d() is a polynomial of t, must satisfy
the condition ((t)) < M, (y()) < M, for a sufficiently large numr
M. In other words, if we choose a positive numr M sufficiently
large, the indeterminate equation has no polynomial solution x($), y(t),

I express my hearty thanks to Dr. M. Tazawa for his kind
guidance.


