112. On Fourier Constants.

By Gen-ichirô Sunouchi.

Mathematical Institute, Tohoku Imperial University, Sendai. (Comm. by M. FUJIWARA, M.I.A., Oct. 12, 1944.)

G. H. Hardy^D proved the following theorem:

- (A) If $\{a_n\}$ are the Fourier constants of a function of L_p $(p \ge 1)$, then $\{(\sum_{k=1}^n a_k)/n\}$ are also the Fourier constants of a function of L_p . Recently T. Kawata²⁾ has proved a dual form of (A), that is:
- (B) If $\{a_n\}$ are the Fourier sine constants of a function of L_p (p>1), then $\{\sum_{k=n}^{\infty} a_k/k\}$ are also the Fourier sine constants of a function of L_p . Moreover if $\{a_n\}$ are the Fourier sine constants of a function of L_z , then $\{\sum_{k=n}^{\infty} a_k/k\}$ are the Fourier sine constants of a function of L.

In the present note the author considers the case of cosine constants and completes (B) in the following form.

Theorem 1. If $\{a_n\}$ are the Fourier constants of a function L_p (p>1), then $\{\sum_{k=n}^{\infty} a_k/k\}$ are also the Fourier constants of a function of L_p . Moreover if $\{a_n\}$ are the Fourier constants of a function of L_z , then $\{\sum_{k=n}^{\infty} a_k/k\}$ are the Fourier constants of a function of L.

The method of proof is analogous to that of Kawata, but is somewhat delicate.

Proof of the case L_p . It is sufficient to prove the theorem for pure cosine series without constant term, that is $\int_{a}^{\pi} f(x)dx = 0$.

Let

(1)
$$f(x) \sim \sum_{k=0}^{\infty} a_k \cos kx, \quad f(x) \in L_p,$$

(2)
$$g(x) \sim \sum_{k=1}^{\infty} \frac{1}{k} \cos kx,$$

then $g(x) \in L_r$ for all $r \ge 1$ by the Hausdorff-Young theorem.

By Parseval's relation³⁾, we have

(3)
$$\sum_{k=n}^{\infty} \frac{a_k}{k} = \frac{2}{\pi} \int_0^{\pi} f(x)g(x)dx - \frac{2}{\pi} \int_0^{\pi} f(x) \sum_{k=1}^{n-1} \frac{\cos kx}{k} dx.$$

The left-hand side series is summable (C, 1), and further in this case it converges as $f(x) \in L_p$.

¹⁾ G. H. Hardy, Messenger of Math., 58 (1928), 50-52.

²⁾ T. Kawata, Proc. 20 (1944), 218-222.

³⁾ A. Zygmund, Trigonometrical series, (1935), 88.

Let
$$\int_0^x f(t)dt = F(x), \text{ then } F(\pi) = 0.$$
 Since
$$g(x) = \frac{1}{2} \log \frac{1}{2(1 - \cos x)},$$

and $\lim_{x\to +0} \left(\log\frac{1}{x}\right) \int_0^x f(t)dt = \lim_{x\to +0} \left(\log\frac{1}{x}\right) \cdot x \int_0^x |f(t)|^p dx = 0,$

the right-hand side of (3) becomes

$$\begin{split} & \frac{2}{\pi} \bigg[F(x)g(x) \bigg]_0^{\pi} + \frac{2}{\pi} \int_0^{\pi} F(x) \frac{1}{2} \cot \frac{x}{2} dx - \frac{2}{\pi} \bigg[F(x) \sum_{k=1}^{n-1} \frac{\cos kx}{k} \bigg]_0^{\pi} \\ & - \frac{2}{\pi} \int_0^{\pi} F(x) \sum_{k=1}^{n-1} \sin kx dx \\ & = \frac{2}{\pi} \bigg\{ \int_0^{\pi} F(x) \frac{1}{2} \cot \frac{x}{2} dx - \int_0^{\pi} F(x) \frac{\cos \frac{1}{2} x - \cos \left(n - \frac{1}{2} \right) x}{2 \sin \frac{1}{2} x} dx \bigg\} \\ & = \frac{2}{\pi} \int_0^{\pi} F(x) \frac{\cos \left(n - \frac{1}{2} \right) x}{2 \sin \frac{1}{2} x} dx \\ & = \frac{2}{\pi} \int_0^{\pi} F(x) \frac{1}{2} \cot \frac{1}{2} x \cos nx dx + \frac{1}{\pi} \int_0^{\pi} F(x) \sin nx dx \,. \end{split}$$

Since $F(x) = \frac{1}{2} \cot \frac{1}{2} x \in L_p$ and $\int_0^{\pi} F(x) \sin nx dx = 0 (n^{-1})$, we get the first part of the theorem.

Proof of the case L_z . For every $\lambda < 1/e$, $e^{\lambda g} \in L^4$. Since L_z and $L_{\exp,\lambda}$ are Young's complementary classes, (3) is still valid and convergency is assured by the Hardy-Littlewood theorem⁵.

$$\lim_{x\to+0} \left(\log\frac{1}{x}\right) \int_0^x f(t)dt = 0$$

follows from the inequality⁶⁾

$$\left(\log\frac{1}{x}\right) \int_{0}^{x} |f(t)| \, dt \le \int_{0}^{x} |f(t)| \log\frac{1}{t} dt \le 2 \int_{0}^{x} |f| \log^{+}|f| \, dt + \frac{4\sqrt{x}}{e} \, ,$$

$$(|x| < 1) \, .$$

And that $F(x)/x \in L$ is nothing but the maximal theorem of Hardy-Littlewood. Thus we complete the proof of the theorem.

Remark. There exist Fourier cosine constants of a function L such as $\sum_{k=1}^{\infty} a_k/k = \infty$. $\sum_{n=2}^{\infty} \frac{\sin nx}{(\log n)^2}$ is sine series of a function of L.

⁴⁾ A. Zygmund, T. S., 234.

⁵⁾ A. Zygmund, T.S., 138.

⁶⁾ G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, (1984), 168-169.

As
$$\sum_{k=n}^{\infty} \frac{1}{k (\log k)^2} \sim \int_x^{\infty} \frac{dt}{t (\log t)^2} = \frac{1}{\log x} \sim \frac{1}{\log n}$$
, $\sum_{k=n}^{\infty} \frac{1}{k (\log k)^2}$ cannot be sine constants. Thus our theorem is best possible in a sense.

In the Fourier integral we get analogous theorem by Titschmarsh's argument⁸⁾.

Theorem 2. If F(x) is the transform of $f(x) \in L_p$ $(1 , then <math display="block">\int_x^{\infty} \frac{F(t)}{t} dt$ is the transform of $\frac{1}{x} \int_0^x f(t) dt$ which belongs to L_p .

⁷⁾ A. Zygmund, T.S., 112.

⁸⁾ E.C. Titchmarsh, Introduction to the theory of Fourier integrals, (1987), 93.