142. Subprojective Transformations, Subprojective Spaces and Subprojective Collineations.

By Kentaro Yano.
Mathematical Institute, Tokyo Imperial University.
(Comm. by S. Kakeya, m.i.A., Dec. 12, 1944.)

§1. The subpaths.
Let A_{n} be an affinely connected space of n dimensions whose components of connection are $\Pi_{\mu \nu}^{\lambda}(x)$.

If we consider a curve $x^{\lambda}=x^{\lambda}(r)$ in this space, the derivative of $x^{\lambda}(r)$ with respect to the parameter r

$$
\frac{\delta x^{\lambda}}{\delta r}=\frac{d x^{\lambda}}{d r}
$$

defines the direction of the tangent at a point x^{λ} of the curve, but the covariant derivative

$$
\frac{\partial^{2} x^{\lambda}}{\partial r^{2}}=\frac{d^{2} x^{\lambda}}{d r^{2}}+\Pi_{\mu \nu}^{\lambda} \frac{d x^{\mu}}{d r} \frac{d x^{\nu}}{d r}
$$

of the tangent vector $\frac{d x^{\lambda}}{d r}$ does not define a direction uniquely. For, if we change the parameter r into \bar{r}, the vector $\frac{\delta^{2} x^{\lambda}}{\delta \bar{r}^{2}}$ becomes a linear combination of $\frac{\delta^{2} x^{\lambda}}{\delta r^{2}}$ and $\frac{\delta x^{\lambda}}{\delta r}$. Thus two vectors $\frac{\delta^{2} x^{\lambda}}{\delta r^{2}}$ and $\frac{\delta x^{\lambda}}{\delta r}$ define, independently of the choice of the parameter r, a two dimensional linear space. We shall call it osculating plane defined along the curve. If the curve is a so-called path the osculating plane is indeterminate.

Now, we suppose that there is given a contravariant vector field $\xi^{2}(x)$ in our affinely connected space A_{n} and shall consider a system of curves whose osculating planes contain always the contravariant vector field ξ^{λ}. The differential equations of such curves are

$$
\begin{equation*}
\left.\frac{d^{2} x^{\lambda}}{d r^{2}}+\Pi_{\mu \nu}^{\lambda} \frac{d x^{\mu}}{d r} \frac{d x^{\nu}}{d r}=\alpha \frac{d x^{\lambda}}{d r}+\beta \xi^{\lambda} .1\right) \tag{1.1}
\end{equation*}
$$

1) The equations of this type have first appeared in D. van Dantzig's projective geometry. See, for example, D. van Dantzig: Theorie des projektiven Zusammenhangs n-dimensionaler Räume. Math. Ann. 106 (1932), 400-454. J. A. Schouten and J. Haantjes: Zur allgemeinen projektiven Differentialgeometrie, Compositio Math. 3 (1936), 1-51. J. Haantjes: On the projective geometry of paths, Proc. of the Edinburgh Math. Soc. 5 (1937), 103-115. The paths in these theories are represented by subpaths in an affinely connected space A_{n+1} of $n+1$ dimensions which represents the projectively connected space P_{n}. The present author showed that the paths in 0 . Veblen's projective space may also be represented by subpaths in an affinely connected space A_{n+1} of $n+1$ dimensions which represents the projective space of n dimensions. See, K. Yano: Sur les équations des paths dans l'espace projectif généralisé de M. O. Veblen. To appear in the Proc. Physico-Math. Soc. Japan, 26 (1944).

We shall call these curves subpaths of our affinely connected space with respect to the contravariant vector field $\xi^{\lambda}(\dot{x})$.
§2. The subprojective change of affine connections.
The differential equations of subpaths being given by (1.1), we shall seek for the most general transformations of the components $\Pi_{\mu \nu}^{\lambda}$ of affine connections which change the subpaths with respect to the contravariant vector field ξ^{λ} into the subpaths with respect to the same contravariant vector field ξ^{λ}.

The parameter r in the differential equations of the subpaths (1.1) being the most general one, we can write the differential equations of the subpaths, with respect to the new components of connection $\bar{I}_{\mu \nu}^{\lambda}$ and with respect to the same contravariant vector field ξ^{λ}, in the form

$$
\begin{equation*}
\frac{d^{2} x^{\lambda}}{d r^{2}}+\bar{I}_{\mu \nu}^{\lambda} \frac{d x^{\mu}}{d r} \frac{d x^{\nu}}{d r}=\bar{\alpha} \frac{d x^{\lambda}}{d r}+\bar{\beta} \xi^{\lambda} \tag{2.1}
\end{equation*}
$$

From the equations (1.1) and (2.1), we obtain

$$
\begin{equation*}
T_{{ }_{\mu \nu}}^{\lambda} \frac{d x^{\mu}}{d r} \frac{d x^{\nu}}{d r}=(\bar{\alpha}-\alpha) \frac{d x^{\lambda}}{d r}+(\bar{\beta}-\beta) \xi^{\lambda}, \tag{2.2}
\end{equation*}
$$

where we have put

$$
\begin{equation*}
T_{\cdot \mu \nu}^{\lambda}=\vec{\Pi}_{\mu \nu}^{\lambda}-\Pi_{\mu \nu}^{\lambda}, \tag{2.3}
\end{equation*}
$$

and consequently we know that $T_{\cdot \mu \nu}^{\lambda}$ is a symmetric tensor.
As the equations (2.2) must hold for any values of $\frac{d x^{\lambda}}{d r}$, we obtain

$$
\begin{equation*}
T_{\mu \nu}^{\lambda}=\delta_{\mu}^{\lambda} \varphi_{\nu}+\delta_{\nu}^{\lambda} \varphi_{\mu}+\varphi_{\mu \nu} \xi^{\lambda},{ }^{1)} \tag{2.4}
\end{equation*}
$$

where φ_{ν} and $\varphi_{\mu \nu}$ may be regarded as covariant vector and tensor respectively.

Conversely, the components of connection given by

$$
\begin{equation*}
\bar{\Pi}_{\mu \nu}^{\lambda}=\Pi_{\mu \nu}^{\lambda}+\delta_{\mu}^{\lambda} \varphi_{\nu}+\delta_{\nu}^{\lambda} \varphi_{\mu}+\varphi_{\mu \nu} \xi^{\lambda} \tag{2.5}
\end{equation*}
$$

defines the same system of subpaths as that defined by the components of connection $I_{\mu \nu}^{\lambda}$.

In this sense, we shall call this change of $\Pi_{\mu \nu}^{\lambda}$ the subprojective change of affine connections with respect to the contravariant vector field ξ^{λ}.
§3. The concurrent vector field and subprojective transformations.
The present author ${ }^{2)}$ has recently proved that, if a contravariant vector torse-forming along a curve with respect to an affine connection $\Pi_{\mu \nu}^{\lambda}$ is always torse-forming also with respect to another affine connection $\bar{\Pi}_{\mu \nu}^{\lambda}$, then, there must be a relation of the form

$$
\begin{equation*}
\bar{\Pi}_{\mu \nu}^{\lambda}=\Pi_{\mu \nu}^{\lambda}+\delta_{\mu}^{\lambda} \varphi_{\nu}+\delta_{\nu}^{\lambda} \psi_{\mu} \tag{3.1}
\end{equation*}
$$

[^0]between the components of affine connections $\bar{I}_{i / \nu}^{k}$ and $\Pi_{i \nu \nu}^{\lambda}$. This fact gives us a geometrical interpretation of the projective change of asymmetric affine connections.

The subprojective change of the affine connections explained in $\$ 2$ does not have this property. But, if the vector field ξ^{λ} is a torseforming one, with respect to the affine connection $\Pi_{\mu \nu}^{\lambda}$, that is, if the vector field ξ^{λ} satisfies the equations of the form

$$
\begin{equation*}
\xi_{; \nu}^{\lambda}=\alpha \delta_{\nu}^{\lambda}+\beta_{\nu} \xi^{\lambda}, \tag{3.2}
\end{equation*}
$$

the covariant derivative being taken with respect to the affine connection $\Pi_{\mu \nu}^{\lambda}$, the vector field ξ^{λ} is also torse-forming with respect to the affine connection

$$
\begin{equation*}
\bar{\Pi}_{\mu \nu}^{\lambda .}=I I_{\mu \nu}^{\lambda}+\delta_{\mu}^{\lambda} \varphi_{\nu}+\delta_{\nu}^{\lambda} \varphi_{\mu}+\varphi_{\mu \nu} \xi^{\lambda} \tag{3.3}
\end{equation*}
$$

which is obtained, from $I I_{\mu \nu}^{\lambda}$, by a subprojective change with respect to ξ^{λ}.

For, denoting by $\xi_{\mid \nu}^{\lambda}$ the covariant derivative of ξ^{λ} with respect to $\bar{\Pi}_{\mu \nu}^{\lambda}$, we have

$$
\begin{aligned}
\xi_{1 \nu}^{\lambda} & =\frac{\partial \xi^{\lambda}}{\partial x^{\nu}}+\bar{\Pi}_{\mu \nu}^{\lambda} \xi^{\mu} \\
& =\frac{\partial \xi^{\lambda}}{\partial x^{\nu}}+\left(\Pi_{\mu \nu}^{\lambda}+\delta_{\mu}^{\lambda} \varphi_{\nu}+\delta_{\nu}^{\lambda} \varphi_{\mu}+\varphi_{\mu \nu} \xi^{\lambda}\right) \xi^{\mu} \\
& =\xi_{; \nu}^{\lambda}+\varphi_{\mu} \xi^{\mu} \delta_{\nu}^{\lambda}+\left(\varphi_{\nu}+\varphi_{\mu \nu} \xi^{\mu}\right) \xi^{\lambda} .
\end{aligned}
$$

Thus, ξ^{λ} is torse-forming also with respect to $\bar{\Pi}_{\mu \nu}^{\lambda}$. §4. The subprojective spaces.

Let us consider an arbitrary affine space E_{n} and take a system of linear coordinates x^{λ}. Then, the coordinates x^{λ} may be considered as defining a vector field in E_{n}. The components of affine connection $\Pi_{\mu \nu}^{\lambda}$ of this space being indentically zero, the covariant derivative of x^{λ} is δ_{ν}^{λ}, that is, x^{λ} is a concurrent vector field and consequently torseforming vector field.

The subpaths of the affinely flat space E_{n} are given, in this special coordinates system, by

$$
\begin{equation*}
\frac{d^{2} x^{\lambda}}{d r^{2}}=\alpha \frac{d x^{\lambda}}{d r}+\beta x^{\lambda} . \tag{4.1}
\end{equation*}
$$

If we effect a subprojective change to $I_{\mu \nu}^{\lambda}$, we obtain new components of an affine connection

$$
\begin{equation*}
\bar{\Pi}_{\mu \nu}^{\lambda}=\delta_{\mu}^{\lambda} \varphi_{\nu}+\delta_{\nu}^{\lambda} \varphi_{\mu}+\varphi_{\mu \nu} x^{\lambda}, \tag{4.2}
\end{equation*}
$$

and the subpaths (4.1) are naturally subpaths also with respect to the new affine connection.

The equations of the paths defined with respect to the new affine connection being

$$
\frac{d^{2} x^{\lambda}}{d r^{2}}+\widetilde{\Pi}_{\mu \nu}^{\lambda} \frac{d x^{\mu}}{d r} \cdot \frac{d x^{\nu}}{d r}=\alpha \frac{d x^{\lambda}}{d r},
$$

or

$$
\frac{d^{2} x^{\lambda}}{d r^{2}}+\left(2 \varphi_{\nu} \frac{d x^{\nu}}{d r}-\alpha\right) \frac{d x^{\lambda}}{d r}+\varphi_{\mu \nu} \frac{d x^{\mu}}{d r} \frac{d x^{\nu}}{d r} x^{\lambda}=0
$$

we can conclude that the affinely connected space with the components of connection $\bar{I}_{\mu \nu}^{\mu}$ obtained, by a subprojective change, from an ordinary affine space E_{n} is a subprojective space in the sense of B. Kagan ${ }^{11}$.

Conversely, if we have a subprojective space of B. Kagan, it may be always transformed to an ordinary affine space by a suitable subprojective change of affine connections.
§5. The subprojective collineations.
We shall consider, in this Paragraph, the infinitesimal transformation

$$
\begin{equation*}
\bar{x}^{\lambda}=x^{\lambda}+\varepsilon \xi^{\lambda}, \tag{5.1}
\end{equation*}
$$

which transforms any subpath with respect to ξ^{λ} into a subpath with respect to the same vector field ξ^{λ}. Such an infinitesimal transformation may be called subprojective infinitesimal collineation.

Let

$$
\begin{equation*}
\frac{d^{2} x^{\lambda}}{d r^{2}}+\Pi_{\mu \nu}^{\lambda} \frac{d x^{\mu}}{d r} \frac{d x^{\nu}}{d r}=\alpha \frac{d x^{\lambda}}{d r}+\beta \xi^{\lambda} \tag{5.2}
\end{equation*}
$$

be the differential equations of a subpath. This subpath is transformed into a curve by the infinitesimal transformation (5.1). The necessary and sufficient condition that the new curve be also a subpath with respect to the same vector field ξ^{2} is that

$$
\begin{equation*}
\frac{d^{2} \bar{x}^{\lambda}}{d r^{2}}+\Pi_{\mu \nu}^{\lambda}(\bar{x}) \frac{d \bar{x}^{\mu}}{d r} \frac{d \bar{x}^{\nu}}{d r}=\bar{\alpha} \frac{d \bar{x}^{\lambda}}{d r}+\bar{\beta}^{2}(\bar{x}) . \tag{5.3}
\end{equation*}
$$

Substituting (5.1) in (5.3), and taking account of the quantities containing only to the first order of ε, we find

$$
\begin{aligned}
\frac{d^{2} x^{\lambda}}{d r^{2}} & +\varepsilon \frac{\partial^{2} \xi^{\lambda}}{\partial x^{\mu} \partial x^{\nu}} \frac{d x^{\mu}}{d r} \frac{d x^{\nu}}{d r}+\varepsilon \frac{\partial \xi^{\lambda}}{\partial x^{\alpha}} \frac{d^{2} x^{\alpha}}{d r^{2}} \\
& +\left(\Pi_{\ell \nu \mu}^{\lambda}(x)+\varepsilon \frac{\partial \Pi_{\mu \nu}^{\lambda}}{\partial x^{\omega}} \xi^{\omega}\right)\left(\frac{d x^{\mu}}{d r}+\varepsilon \frac{\partial \xi^{\mu}}{\partial x^{\alpha}} \frac{d x^{\sigma}}{d r}\right)\left(\frac{d x^{\nu}}{d r}+\varepsilon \frac{\partial \xi^{\nu}}{\partial x^{\tau}} \frac{d x^{\tau}}{d r}\right) \\
& =\left(\alpha+\varepsilon \alpha^{\prime}\right)\left(\frac{d x^{\lambda}}{d r}+\varepsilon \frac{\partial \xi^{\lambda}}{\partial x^{\nu}} \frac{d x^{\nu}}{d r}\right)+\left(\beta+\varepsilon \beta^{\prime}\right)\left(\xi^{\lambda}+\varepsilon \frac{\partial \xi^{\lambda}}{\partial x^{\nu}} \xi^{\nu}\right)
\end{aligned}
$$

Substituting (5.2) in this equation and equating the terms containing ε, we have

$$
\left(\frac{\partial^{2} \xi^{\lambda}}{\partial x^{\mu} \partial x^{\nu}}-\frac{\partial \xi^{\lambda}}{\partial x^{a}} I_{\mu \nu}^{a}+\frac{\partial I_{\mu \nu}^{\lambda}}{\partial x^{\omega}} \xi^{\omega}+I I_{\alpha \nu}^{\lambda} \frac{\partial \xi^{\alpha}}{\partial x^{\mu}}+\Pi_{\mu a}^{\lambda} \frac{\partial \xi^{a}}{\partial x^{\nu}}\right) \frac{d x^{\mu}}{d r} \frac{d x^{\nu}}{d r}=\alpha^{\prime} \frac{d x^{\lambda}}{d r}+\beta^{\prime} \xi^{\lambda} .
$$

1) B. Kagan: Über eine Erweiterung des Begriffes vom projektiven Raume und dem zugehörigen Absolute. Abhandlungen aus dem Seminar für Vektor- und Tensoranalysis samit Anwendungen auf Geometrie, Mechanik und Physik, 1 (1933), 12-96.

As these equations must hold for any values of $\frac{d x^{\lambda}}{d r}$, we obtain the equations of the form

$$
\frac{\partial^{2} \xi^{\lambda}}{\partial x^{\mu} \partial x^{\nu}}-\frac{\partial \xi^{\lambda}}{\partial x^{a}} \Pi_{\mu \nu}^{a}+\frac{\partial \Pi_{\mu \nu}^{\lambda} \xi^{\omega}}{\partial x^{\omega}}+I_{a \nu}^{\lambda} \frac{\partial \xi^{\alpha}}{\partial x^{\mu}}+\Pi_{\mu a}^{\lambda} \frac{\partial \xi^{\alpha}}{\partial x^{\nu}}=\hat{o}_{\mu}^{\lambda} \varphi_{\nu}+\delta_{\nu}^{\lambda} \varphi_{\mu}+\varphi_{\mu \nu} \xi^{\lambda},
$$

where φ_{ν} and $\varphi_{\mu \nu}$ are arbitrary covariant vector and tensor respectively.
Putting these equations in tensor form, we obtain

$$
\begin{equation*}
\xi_{; \mu ; \nu}^{\lambda}+\Pi_{\cdot \mu \nu \omega}^{\lambda} \xi^{\omega}=\delta_{\mu}^{\lambda} \varphi_{\nu}+\delta_{\nu}^{\lambda} \varphi_{\mu}+\varphi_{\mu \nu} \xi^{\lambda} .^{1)} \tag{5.4}
\end{equation*}
$$

This is the necessary and sufficient condition that the infinitesimal transformation (5.1) transform any subpath with respect to the vector field ξ^{λ} into a subpath with respect to the same vector field ξ^{λ}, say, that the infinitesimal transformation be a subprojective collineation.

If we put $\beta=0$ in (5.2) and $\bar{\beta}=0$ in (5.3), we have, instead of (5.4),

$$
\begin{equation*}
\xi_{; \mu ; \nu}^{\lambda}+\Pi{ }_{\cdot \mu \nu \omega}^{\lambda} \xi^{\omega}=\delta_{\mu \mu}^{\lambda} \varphi_{\nu}+\delta_{\nu}^{\lambda} \varphi_{\mu} . \tag{5.5}
\end{equation*}
$$

This is the well known condition that the infinitesimal transformation (5.1) be a projective collineation.

If we put $\alpha=\beta=0$ in (5.2) and $\bar{\alpha}=\bar{\beta}=0$ in (5.3), we have

$$
\begin{equation*}
\xi_{; \mu ; \nu}^{\lambda}+\Pi \Pi_{\mu \nu \omega}^{\lambda} \xi^{\omega}=0 . \tag{5.5}
\end{equation*}
$$

In this case, the infinitesimal transformation (5.1) is an affine collineation.
§6. The representation of the projective spaces.
In a previous paper ${ }^{2)}$, we have proved the theorem: In order that an affinely connected space of $n+1$ dimensions can represent a projective space of paths of n dimensions, it is necessary and sufficient that there exist, in the affinely connected space, a contravariant vector field ξ^{λ} such that the conditions

$$
\begin{align*}
\xi_{; \mu ; \nu}^{\lambda}+I I_{\cdot \mu \nu \omega}^{\lambda} \xi^{\omega} & =\delta_{\mu}^{\lambda} \varphi_{\nu}+\delta_{\nu}^{\lambda} \varphi_{\mu}+\varphi_{\mu \nu} \xi^{\lambda}, \tag{6.1}\\
\xi_{; \nu}^{\lambda} & =\alpha \delta_{\nu}^{\lambda}+\beta_{\nu} \xi^{\lambda} \tag{6.2}
\end{align*}
$$

are satisfied. But, the first condition represents that the affinely connected space admits a subprojective infinitesimal collineation in the direction ξ^{λ}, and the second says that the vector field ξ^{λ} is a torseforming one.

Thus we can state the above theorem in the following form: In order that an affinely connected space of $n+1$ dimensions can represent a projective space of paths of n dimensions, it is necessary and sufficient that there exist, in the affinely connected space, a torse-forming contravariant vector field ξ^{λ} in the direction of which the affinely connected space admits an infinitesimal subprojective transformation.

1) $\Pi_{\cdot \mu \nu \omega}^{\lambda}$ denotes the curvature tensor formed with the components $\Pi_{\mu \nu}^{\lambda}$
2) K. Yano: Sur les espaces à connexion affine qui peuvent représenter les espaces projectifs des paths. Proc., 20 (1944), 631-639.

[^0]: 1) The equations of this type have first appeared also in D. van Dantzig's theory of projective spaces.
 2) K. Yano: Über eine geometrische Deutung der projektive Transformationen nichtsymmetrischer affiner Übertragungen. Proc. 20 (1944), 284-287. See also, K. Yano: On the torse-forming directions in Riemannian spaces. Proc. 20 (1944), $340-345$.
