No. 10.]

142. Subprojective Transformations, Subprojective Spaces and Subprojective Collineations.

By Kentaro YANO.

Mathematical Institute, Tokyo Imperial University. (Comm. by S. KAKEYA, M.I.A., Dec. 12, 1944.)

§ 1. The subpaths.

Let A_n be an affinely connected space of *n* dimensions whose components of connection are $\Pi^{\lambda}_{\mu\nu}(x)$.

If we consider a curve $x^{\lambda} = x^{\lambda}(r)$ in this space, the derivative of $x^{\lambda}(r)$ with respect to the parameter r

$$\frac{\delta x^{\lambda}}{\delta r} = \frac{dx^{\lambda}}{dr}$$

defines the direction of the tangent at a point x^{λ} of the curve, but the covariant derivative

$$\frac{\partial^2 x^{\lambda}}{\partial r^2} = \frac{d^2 x^{\lambda}}{dr^2} + \Pi^{\lambda}_{\mu\nu} \frac{dx^{\mu}}{dr} \frac{dx^{\nu}}{dr}$$

of the tangent vector $\frac{dx^{\lambda}}{dr}$ does not define a direction uniquely. For, if we change the parameter r into \bar{r} , the vector $\frac{\partial^2 x^{\lambda}}{\partial \bar{r}^2}$ becomes a linear combination of $\frac{\partial^2 x^{\lambda}}{\partial r^2}$ and $\frac{\partial x^{\lambda}}{\partial r}$. Thus two vectors $\frac{\partial^2 x^{\lambda}}{\partial r^2}$ and $\frac{\partial x^{\lambda}}{\partial r}$ define, independently of the choice of the parameter r, a two dimensional linear space. We shall call it osculating plane defined along the curve. If the curve is a so-called path the osculating plane is indeterminate.

Now, we suppose that there is given a contravariant vector field $\xi^{\lambda}(x)$ in our affinely connected space A_n and shall consider a system of curves whose osculating planes contain always the contravariant vector field ξ^{λ} . The differential equations of such curves are

(1.1)
$$\frac{d^2x^{\lambda}}{dr^2} + \Pi^{\lambda}_{\mu\nu} \frac{dx^{\mu}}{dr} \frac{dx^{\nu}}{dr} = \alpha \frac{dx^{\lambda}}{dr} + \beta \xi^{\lambda} .^{1}$$

¹⁾ The equations of this type have first appeared in D. van Dantzig's projective geometry. See, for example, D. van Dantzig: Theorie des projektiven Zusammenhangs *n*-dimensionaler Räume. Math. Ann. **106** (1932), 400-454. J. A. Schouten and J. Haantjes: Zur allgemeinen projektiven Differentialgeometrie, Compositio Math. **3** (1936), 1-51. J. Haantjes: On the projective geometry of paths, Proc. of the Edinburgh Math. Soc. **5** (1937), 103-115. The paths in these theories are represented by subpaths in an affinely connected space A_{n+1} of n+1 dimensions which represents the projective space may also be represented by subpaths in an affinely connected space A_{n+1} of n+1 dimensions. See, K. Yano: Sur les équations des paths dans l'espace projectif généralisé de M. O. Veblen. To appear in the Proc. Physico-Math. Soc. Japan, **26** (1944).

We shall call these curves subpaths of our affinely connected space with respect to the contravariant vector field $\xi^{\lambda}(x)$.

[§] 2. The subprojective change of affine connections.

The differential equations of subpaths being given by (1.1), we shall seek for the most general transformations of the components $\Pi^{\lambda}_{\mu\nu}$ of affine connections which change the subpaths with respect to the contravariant vector field ξ^{λ} into the subpaths with respect to the same contravariant vector field ξ^{λ} .

The parameter r in the differential equations of the subpaths (1.1) being the most general one, we can write the differential equations of the subpaths, with respect to the new components of connection $\overline{\Pi}^{\lambda}_{\mu\nu}$ and with respect to the same contravariant vector field ξ^{λ} , in the form

(2.1)
$$\frac{d^2x^{\lambda}}{dr^2} + \overline{H}^{\lambda}_{\mu\nu}\frac{dx^{\mu}}{dr} - \frac{dx^{\nu}}{dr} = \overline{a}\frac{dx^{\lambda}}{dr} + \overline{\beta}\xi^{\lambda}.$$

From the equations (1.1) and (2.1), we obtain

(2.2)
$$T^{\lambda}_{,\mu\nu}\frac{dx^{\mu}}{dr}\frac{dx^{\nu}}{dr} = (\bar{a}-a)\frac{dx^{\lambda}}{dr} + (\bar{\beta}-\beta)\xi^{\lambda},$$

where we have put

(2.3)
$$T^{\lambda}_{,\mu\nu} = \overline{\Pi}^{\lambda}_{,\mu\nu} - \Pi^{\lambda}_{,\mu\nu},$$

and consequently we know that $T^{\lambda}_{.\mu\nu}$ is a symmetric tensor.

As the equations (2.2) must hold for any values of $\frac{dx^{\lambda}}{dx}$, we obtain

(2.4)
$$T^{\lambda}_{\,\,\mu\nu} = \delta^{\lambda}_{\,\mu}\varphi_{\nu} + \delta^{\lambda}_{\,\nu}\varphi_{\,\mu} + \varphi_{\,\mu\nu}\xi^{\lambda}, 1$$

where φ_{ν} and $\varphi_{\mu\nu}$ may be regarded as covariant vector and tensor respectively.

Conversely, the components of connection given by

(2.5)
$$\Pi^{\lambda}_{\mu\nu} = \Pi^{\lambda}_{\mu\nu} + \delta^{\lambda}_{\mu}\varphi_{\nu} + \delta^{\lambda}_{\nu}\varphi_{\mu} + \varphi_{\mu\nu}\xi^{\lambda}$$

defines the same system of subpaths as that defined by the components of connection $\Pi_{\mu\nu}^{\lambda}$.

In this sense, we shall call this change of $\Pi^{\lambda}_{\mu\nu}$ the subprojective change of affine connections with respect to the contravariant vector field ξ^{λ} .

The present author²⁾ has recently proved that, if a contravariant vector torse-forming along a curve with respect to an affine connection $\Pi^{\lambda}_{\mu\nu}$ is always torse-forming also with respect to another affine connection nection $\bar{\Pi}^{\lambda}_{\mu\nu}$, then, there must be a relation of the form

(3.1)
$$\overline{\Pi}^{\lambda}_{\mu\nu} = \Pi^{\lambda}_{\mu\nu} + \delta^{\lambda}_{\mu}\varphi_{\nu} + \delta^{\lambda}_{\nu}\psi_{\mu}$$

¹⁾ The equations of this type have first appeared also in D. van Dantzig's theory of projective spaces.

²⁾ K. Yano: Über eine geometrische Deutung der projektive Transformationen nichtsymmetrischer affiner Übertragungen. Proc. 20 (1944), 284-287. See also, K. Yano: On the torse-forming directions in Riemannian spaces. Proc. 20 (1944), 340-345.

No. 10.] Subprojective transformations, spaces and collineations.

between the components of affine connections $\overline{H}^{\lambda}_{\mu\nu}$ and $H^{\lambda}_{\mu\nu}$. This fact gives us a geometrical interpretation of the projective change of asymmetric affine connections.

The subprojective change of the affine connections explained in §2 does not have this property. But, if the vector field ξ^{λ} is a torse-forming one, with respect to the affine connection $\Pi^{\lambda}_{\mu\nu}$, that is, if the vector field ξ^{λ} satisfies the equations of the form

(3.2)
$$\xi^{\lambda}_{;\nu} = a \delta^{\lambda}_{\nu} + \beta_{\nu} \xi^{\lambda},$$

the covariant derivative being taken with respect to the affine connection $\Pi^{\lambda}_{\mu\nu}$, the vector field ξ^{λ} is also torse-forming with respect to the affine connection

(3.3)
$$\overline{\Pi}_{\mu\nu}^{\lambda} = \Pi_{\mu\nu}^{\lambda} + \delta_{\mu}^{\lambda}\varphi_{\nu} + \delta_{\nu}^{\lambda}\varphi_{\mu} + \varphi_{\mu\nu}\xi^{\lambda},$$

which is obtained, from $II^{\lambda}_{\mu\nu}$, by a subprojective change with respect to ξ^{λ} .

For, denoting by $\xi^{\lambda}_{\ \nu}$ the covariant derivative of ξ^{λ} with respect to $\overline{\Pi}^{\lambda}_{\mu\nu}$, we have

$$\begin{split} \xi^{\lambda}{}_{|\nu} &= \frac{\partial \xi^{\lambda}}{\partial x^{\nu}} + \vec{\Pi}^{\lambda}{}_{\mu\nu} \xi^{\mu} \\ &= \frac{\partial \xi^{\lambda}}{\partial x^{\nu}} + (\Pi^{\lambda}{}_{\mu\nu} + \delta^{\lambda}{}_{\mu} \varphi_{\nu} + \delta^{\lambda}{}_{\nu} \varphi_{\mu} + \varphi_{\mu\nu} \xi^{\lambda}) \xi^{\mu} \\ &= \xi^{\lambda}{}_{;\nu} + \varphi_{\mu} \xi^{\mu} \delta^{\lambda}{}_{\nu} + (\varphi_{\nu} + \varphi_{\mu\nu} \xi^{\mu}) \xi^{\lambda}. \end{split}$$

Thus, ξ^{λ} is torse-forming also with respect to $\overline{\Pi}_{\mu\nu}^{\lambda}$. § 4. The subprojective spaces.

Let us consider an arbitrary affine space E_n and take a system of linear coordinates x^{λ} . Then, the coordinates x^{λ} may be considered as defining a vector field in E_n . The components of affine connection $\Pi^{\lambda}_{\mu\nu}$ of this space being indentically zero, the covariant derivative of x^{λ} is δ^{λ}_{ν} , that is, x^{λ} is a concurrent vector field and consequently torseforming vector field.

The subpaths of the affinely flat space E_n are given, in this special coordinates system, by

(4.1)
$$\frac{d^2x^{\lambda}}{dr^2} = a \frac{dx^{\lambda}}{dr} + \beta x^{\lambda} .$$

If we effect a subprojective change to $H^{\lambda}_{\mu\nu}$, we obtain new components of an affine connection

(4.2)
$$\overline{\Pi}^{\lambda}_{\mu\nu} = \delta^{\lambda}_{\mu}\varphi_{\nu} + \delta^{\lambda}_{\nu}\varphi_{\mu} + \varphi_{\mu\nu}x^{\lambda},$$

and the subpaths (4.1) are naturally subpaths also with respect to the new affine connection.

The equations of the paths defined with respect to the new affine connection being

$$rac{d^2x^\lambda}{dr^2} + \overline{\Pi}^\lambda_{\mu
u} rac{dx^\mu}{dr} rac{dx^\mu}{dr} rac{dx^
u}{dr} = lpha rac{dx^\lambda}{dr} ,$$

or

704

$$\frac{d^2x^{\lambda}}{dr^2} + \left(2\varphi_{\nu}\frac{dx^{\nu}}{dr} - \alpha\right)\frac{dx^{\lambda}}{dr} + \varphi_{\mu\nu}\frac{dx^{\mu}}{dr}\frac{dx^{\nu}}{dr}x^{\lambda} = 0,$$

we can conclude that the affinely connected space with the components of connection $\overline{\Pi}^{\lambda}_{\mu\nu}$ obtained, by a subprojective change, from an ordinary affine space E_n is a subprojective space in the sense of B. Kagan¹⁾.

Conversely, if we have a subprojective space of B. Kagan, it may be always transformed to an ordinary affine space by a suitable subprojective change of affine connections.

§ 5. The subprojective collineations.

We shall consider, in this Paragraph, the infinitesimal transformation

(5.1)
$$\bar{x}^{\lambda} = x^{\lambda} + \varepsilon \xi^{\lambda},$$

which transforms any subpath with respect to ξ^{λ} into a subpath with respect to the same vector field ξ^{λ} . Such an infinitesimal transformation may be called subprojective infinitesimal collineation.

Let

(5.2)
$$\frac{d^2x^{\lambda}}{dr^2} + \prod_{\mu\nu} \frac{dx^{\mu}}{dr} \frac{dx^{\nu}}{dr} = a \frac{dx^{\lambda}}{dr} + \beta \xi^{\lambda}$$

be the differential equations of a subpath. This subpath is transformed into a curve by the infinitesimal transformation (5.1). The necessary and sufficient condition that the new curve be also a subpath with respect to the same vector field ξ^{λ} is that

(5.3)
$$\frac{d^2 \bar{x}^{\lambda}}{dr^2} + \Pi^{\lambda}_{\mu\nu}(\bar{x}) \frac{d\bar{x}^{\mu}}{dr} \frac{d\bar{x}^{\nu}}{dr} = \bar{a} \frac{d\bar{x}^{\lambda}}{dr} + \bar{\beta} \xi^{\lambda}(\bar{x}) \,.$$

Substituting (5.1) in (5.3), and taking account of the quantities containing only to the first order of ϵ , we find

$$\begin{aligned} \frac{d^2x^{\lambda}}{dr^2} + \varepsilon \frac{\partial^2 \xi^{\lambda}}{\partial x^{\mu} \partial x^{\nu}} \frac{dx^{\mu}}{dr} \frac{dx^{\nu}}{dr} + \varepsilon \frac{\partial \xi^{\lambda}}{\partial x^{a}} \frac{d^2x^{a}}{dr^2} \\ + \left(\Pi^{\lambda}_{\mu\nu}(x) + \varepsilon \frac{\partial \Pi^{\lambda}_{\mu\nu}}{\partial x^{\omega}} \xi^{\omega}\right) \left(\frac{dx^{\mu}}{dr} + \varepsilon \frac{\partial \xi^{\mu}}{\partial x^{\sigma}} \frac{dx^{\sigma}}{dr}\right) \left(\frac{dx^{\nu}}{dr} + \varepsilon \frac{\partial \xi^{\nu}}{\partial x^{\tau}} \frac{dx^{\tau}}{dr}\right) \\ = (\alpha + \varepsilon \alpha') \left(\frac{dx^{\lambda}}{dr} + \varepsilon \frac{\partial \xi^{\lambda}}{\partial x^{\nu}} \frac{dx^{\nu}}{dr}\right) + (\beta + \varepsilon \beta') \left(\xi^{\lambda} + \varepsilon \frac{\partial \xi^{\lambda}}{\partial x^{\nu}} \xi^{\nu}\right) \end{aligned}$$

Substituting (5.2) in this equation and equating the terms containing ε , we have

$$\left(\frac{\partial^{2}\xi^{\lambda}}{\partial x^{\mu}\partial x^{\nu}}-\frac{\partial\xi^{\lambda}}{\partial x^{a}}\Pi^{a}_{\mu\nu}+\frac{\partial\Pi^{\lambda}_{\mu\nu}}{\partial x^{\omega}}\xi^{\omega}+\Pi^{\lambda}_{a\nu}\frac{\partial\xi^{a}}{\partial x^{\mu}}+\Pi^{\lambda}_{\mu a}\frac{\partial\xi^{a}}{\partial x^{\nu}}\right)\frac{dx^{\mu}}{dr}\frac{dx^{\nu}}{dr}=\alpha'\frac{dx^{\lambda}}{dr}+\beta'\xi^{\lambda}.$$

¹⁾ B. Kagan: Über eine Erweiterung des Begriffes vom projektiven Raume und dem zugehörigen Absolute. Abhandlungen aus dem Seminar für Vektor- und Tensoranalysis samit Anwendungen auf Geometrie, Mechanik und Physik, **1** (1933), 12-96.

No. 10.] Subprojective transformations, spaces and collineations.

As these equations must hold for any values of $\frac{dx^{\lambda}}{dr}$, we obtain the equations of the form

$$\frac{\partial^{2}\xi^{\lambda}}{\partial x^{\mu}\partial x^{\nu}} - \frac{\partial\xi^{\lambda}}{\partial x^{a}}\Pi^{a}_{\mu\nu} + \frac{\partial\Pi^{\lambda}_{\mu\nu}}{\partial x^{\omega}}\xi^{\omega} + \Pi^{\lambda}_{a\nu}\frac{\partial\xi^{a}}{\partial x^{\mu}} + \Pi^{\lambda}_{\mu a}\frac{\partial\xi^{a}}{\partial x^{\nu}} = \delta^{\lambda}_{\mu}\varphi_{\nu} + \delta^{\lambda}_{\nu}\varphi_{\mu} + \varphi_{\mu\nu}\xi^{\lambda},$$

where φ_{ν} and $\varphi_{\mu\nu}$ are arbitrary covariant vector and tensor respectively. Putting these equations in tensor form, we obtain

(5.4)
$$\xi^{\lambda}_{;\,\mu;\,\nu} + \Pi^{\lambda}_{,\mu\nu\omega} \xi^{\omega} = \delta^{\lambda}_{\mu} \varphi_{\nu} + \delta^{\lambda}_{\nu} \varphi_{\mu} + \varphi_{\mu\nu} \xi^{\lambda}_{,\,\nu}$$

This is the necessary and sufficient condition that the infinitesimal transformation (5.1) transform any subpath with respect to the vector field ξ^{λ} into a subpath with respect to the same vector field ξ^{λ} , say, that the infinitesimal transformation be a subprojective collineation.

If we put $\beta = 0$ in (5.2) and $\overline{\beta} = 0$ in (5.3), we have, instead of (5.4),

(5.5)
$$\xi_{\mu;\mu}^{\lambda} + \Pi_{\mu\nu\sigma}^{\lambda} \xi^{\omega} = \delta_{\mu}^{\lambda} \varphi_{\nu} + \delta_{\nu}^{\lambda} \varphi_{\mu}.$$

This is the well known condition that the infinitesimal transformation (5.1) be a projective collineation.

If we put $\alpha = \beta = 0$ in (5.2) and $\overline{\alpha} = \overline{\beta} = 0$ in (5.3), we have

(5.5)
$$\xi_{;\mu;\nu}^{\lambda} + \Pi_{;\mu\nu\omega}^{\lambda} \xi^{\omega} = 0$$

In this case, the infinitesimal transformation (5.1) is an affine collineation.

§6. The representation of the projective spaces.

In a previous paper²⁾, we have proved the theorem : In order that an affinely connected space of n+1 dimensions can represent a projective space of paths of n dimensions, it is necessary and sufficient that there exist, in the affinely connected space, a contravariant vector field ξ^{λ} such that the conditions

(6.1)
$$\xi^{\lambda}_{;\mu;\nu} + H^{\lambda}_{;\mu;\nu} \xi^{\omega} = \delta^{\lambda}_{\mu} \varphi_{\nu} + \delta^{\lambda}_{\nu} \varphi_{\mu} + \varphi_{\mu\nu} \xi^{\lambda},$$

(6.2)
$$\xi_{\nu}^{\lambda} = \alpha \delta_{\nu}^{\lambda} + \beta_{\nu} \xi^{\lambda}$$

are satisfied. But, the first condition represents that the affinely connected space admits a subprojective infinitesimal collineation in the direction ξ^{λ} , and the second says that the vector field ξ^{λ} is a torse-forming one.

Thus we can state the above theorem in the following form: In order that an affinely connected space of n+1 dimensions can represent a projective space of paths of n dimensions, it is necessary and sufficient that there exist, in the affinely connected space, a torse-forming contravariant vector field ξ^{λ} in the direction of which the affinely connected space admits an infinitesimal subprojective transformation.

¹⁾ $\Pi^{\lambda}_{,\mu\nu\omega}$ denotes the curvature tensor formed with the components $\Pi^{\lambda}_{,\mu\nu}$.

²⁾ K. Yano: Sur les espaces à connexion affine qui peuvent représenter les espaces projectifs des paths. Proc., **20** (1944), 631-639.