PAPERS COMMUNICATED

15. Completely Continuous Transformations in Hilbert Spaces.

By Sitiro HANAI.

Nagaoka Technical College.

(Comm. by S. KAKEYA, M.I.A., Feb. 12, 1945.)

1. By a space of type A^{1} we mean a Banach space in which there exist a linearly independent sequence $\{f_n\}$ of elements of unit norm and a double sequence $\{L_{mn}(f)\}$ of bounded linear functionals such that for every f

(A)
$$\lim_{m\to\infty} \|f - \sum_{n=1}^{m_n} L_{mn}(f) f_n\| = 0.$$

It will be seen that the conception of a space of type A is a generalization of the idea of a Banach space with a denumerable base²⁾.

Let \mathfrak{T} denote the space of all completely continuous transformations of a Hilbert space \mathfrak{F} into itself, that is, the space of all bounded linear transformations which carry every bounded set of \mathfrak{F} into a compact set.

In this note we will prove that the space \mathfrak{T} is a separable space of type A.

2. We prove now the following theorem :

Theorem 1. In the space \mathfrak{T} , there exist a linearly independent double sequence $\{T_{ij}\}$ of elements of unit norm and a double sequence $\{a_{ij}(T)\}$ of bounded linear functionals such that for any $T \in \mathfrak{T}$

$$T = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{ij}(T) T_{ij}.$$

Proof. Let $\{\varphi_n\}$ denote the complete orthonormal set of the space \mathfrak{F} . We define $\{T_{ij}\}$ as follows:

$$T_{ij}(x) = (x, \varphi_j)\varphi_i$$
 for all $x \in \mathfrak{H}$, $(i, j=1, 2, ...)$.

Then it is evident that $T_{ij} \in \mathfrak{T}$, $||T_{ij}||=1$ and the sequence $\{T_{ij}\}$ is linearly independent. Let \mathfrak{M}_j be the closed linear manifold determined by $\{\varphi_1, \varphi_2, \dots, \varphi_j\}$. Then we can prove that every bounded linear transformation T with domain \mathfrak{H} and with range \mathfrak{M}_1 is expressed in the form $T = \sum_{j=1}^{\infty} a_{1j}(T)T_{1j}$ where $a_{1j}(T)$ are bounded linear functionals. In fact, by use of F. Riesz' theorem³⁾ it can be easily shown that

¹⁾ The notion of a space of type A was introduced by I. Maddaus. I. Maddaus; Completely continuous linear transformations, Bull. Amer. Math. Soc. Vol. 44 (1938), 279-282.

²⁾ S. Banach; Théories des opérations linéaires, p. 110.

³⁾ M.H. Stone; Linear transformations in Hilbert space and their applications to analysis, p. 62, Theorem 2. 27.

T is expressed in the form $T(x) = (x, y)\varphi_1$ where *y* is uniquely determined corresponding to *T*. Let $y = \sum_{i=1}^{\infty} a_i \varphi_i$, then we have

$$T(x) = \sum_{j=1}^{\infty} \bar{a}_j(x, \varphi_j) \varphi_1 = \sum_{j=1}^{\infty} \bar{a}_j T_{1j}(x)$$

where \bar{a}_{j} denotes the conjugate complex number of a_{j} .

Let
$$T_n(x) = \sum_{j=1}^n \bar{a}_j T_{1j}(x)$$
, then
 $\| T(x) - T_n(x) \| = \| \sum_{j=n+1}^\infty \bar{a}_j T_{1j}(x) \| = \| (x, y - \sum_{j=1}^n a_j \varphi_j) \varphi_1 \|$
 $= | (x, y - \sum_{j=1}^n a_j \varphi_j) | \leq \| x \| \cdot \| y - \sum_{j=1}^n a_j \varphi_j \|$

Therefore for every $||x|| \leq 1$

$$||T(x) - T_n(x)|| \leq ||y - \sum_{j=1}^n a_j \varphi_j||,$$

so that we have

$$\lim_{n\to\infty} \|T-T_n\|=0.$$

Now let $a_{ij}(T)$ denote the number \bar{a}_j which corresponds to T, then we have

$$T = \sum_{j=1}^{\infty} a_{1j}(T) T_{1j} \, .$$

Since $a_{1j}(T) = (\varphi_j, y)$ and $||T|| = \lim_{|x| \le 1} |(x, y)|$, we have $||T|| \ge |(\varphi_j, y)|$ and hence $||T|| \ge |a_{1j}(T)|$.

On the other hand, from the definition of $a_{1j}(T)$ it is easily seen that $a_{1j}(T)$ are additive functionals. Therefore $a_{1j}(T)$ are bounded linear functionals.

By the similar argument we can prove that every bounded linear transformation T with domain \mathfrak{H} and with range \mathfrak{M}_n (n=1, 2, ...) can be expressed in the form $T = \sum_{i=1}^{n} \sum_{j=1}^{\infty} a_{ij}(T)T_{ij}$ where $a_{ij}(T)$ are bounded linear functionals.

Now let T be an arbitrary element of the space \mathfrak{T} , then

$$T(x) = (x, y_1)\varphi_1 + (x, y_2)\varphi_2 + \cdots$$
$$= \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{ij}(T)T_{ij}(x) .$$

Form the proof of I. Maddaus' theorem¹, that is, every completely continuous transformation of a Banach space into a space of type A is the strong limit of a sequence of singular transformations², we can prove that $T = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{ij}(T)T_{ij}$ and every $a_{ij}(T)$ is a bounded linear

¹⁾ I. Maddaus; loc. cit.

²⁾ A Singular transformation is, by definition, a bounded linear transformation which transforms its domain into a space of a finite number of dimensions.

No. 2.] Completely Continuous Transformations in Hilbert Spaces.

functional. Thus the proof of the theorem is completed.

Remark. Since $\sum_{i=1}^{n} \sum_{j=1}^{\infty} a_{ij}(T)T_{ij}$ is contained in \mathfrak{T} for each *n*, it follows from Theorem 1 that elements T of \mathfrak{T} are characterized by being expressed in the form $T = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{ij}(T) T_{ij}$.

Theorem 2. The space \mathfrak{T} is a separable space of type A.

Proof. Let T be an arbitrary element of the space \mathfrak{T} and let $\epsilon > 0$ any prescribed number. In view of Theorem 1, there exist positive integers m, n such that

$$\|T - \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}(T) T_{ij}\| < \frac{\varepsilon}{2}.$$

On the other hand, there exists a sequence $\{r_{ij}\}$ of complex numbers, each with rational real and imaginary parts, such that

$$\|\sum_{i=1}^m\sum_{j=1}^n \{a_{ij}(T)-\mathfrak{r}_{ij}\}T_{ij}\| < \frac{\epsilon}{2}.$$

Therefore $||T - \sum_{i=1}^{m} \sum_{j=1}^{n} r_{ij}T_{ij}|| < \epsilon$, hence the space \mathfrak{T} is a separable

space.

Let $\{T_k\}$ (k=1, 2, ...) denote the denumerable set which is everywhere dense in \mathfrak{T} and let $\{\epsilon_l\}$ be a decreasing sequence of positive numbers such that $\lim \epsilon_l = 0$. Then it can be shown that there exists an increasing¹⁾ sequence $\{(m_l^{(k)}, n_l^{(k)})\}$ of pairs of positive integers such that

$$\|T_k - \sum_{i=1}^{m_l^{(k)}} \sum_{j=1}^{n_l^{(k)}} a_{ij}(T_k) T_{ij}\| < \epsilon_l \quad \text{for} \quad k, l = 1, 2, ...,$$

and

 $m_l^{(k+1)} \ge m_l^{(k)}, n_l^{(k+1)} \ge n_l^{(k)}$ for k, l=1, 2, ...

Let $\{(m_l, n_l)\}$ be a sequence such that $m_l = m_l^{(l)}, n_l = n_l^{(l)}$. Then

$$\lim_{l \to \infty} \|T_k - \sum_{i=1}^{m_l} \sum_{j=1}^{n_l} a_{ij}(T_k) T_{ij}\| = 0$$

for every k.

Since $\{T_k\}$ is everywhere dense in \mathfrak{T} , for any $T \in \mathfrak{T}$

$$\lim_{l \to \infty} \|T - \sum_{i=1}^{m_l} \sum_{j=1}^{n_l} a_{ij}(T) T_{ij}\| = 0.$$
 (1)

By the method of diagonal process we renumber the double sequence $\{a_{ij}(T)T_{ij}\}$ into a simple sequence $\{a_n(T)T_n\}$. We express each of the expression (1) in the form with terms of $\{a_n(T)T_n\}$ and denote by (1)^{*} the new expressions. Let l_n be the greatest integer in the expression (1)* for each l=1, 2, ... When the term $a_a(T)T_a$ ($a < l_n$) is not contained in (1)^{*} for each l, we define $a_a(T) = 0$ for all $T \in \mathbb{Z}$. Let $L_{ln}(T) = a_n(T)$ in the expression $(1)^*$ which corresponds to l.

¹⁾ A sequence $\{(m_l^{(k)}, n_l^{(k)})\}$ is said to be increasing if $m_{l+1}^{(k)} > m_l^{(k)}$ and $n_{l+1}^{(k)} > n_l^{(k)}$ for l=1, 2, ...

Then we have

$$\sum_{i=1}^{m_l} \sum_{j=1}^{n_l} a_{ij}(T) T_{ij} = \sum_{n=1}^{l_n} L_{ln}(T) T_n$$

for each *l*.

Therefore for every $T \in \mathfrak{T}$

$$\lim_{l\to\infty} \|T - \sum_{n-1}^{l_n} L_{ln}(T)T_n\| = 0.$$

Thus the space \mathfrak{T} satisfies the condition (A).

Since the fact that the space \mathfrak{T} is a Banach space is easily shown by means of the property that the space \mathfrak{H} is complete, we omit the proof. Thus we have established the theorem.

As an immediate consequence of Theorem 2 and I. Maddaus' theorem we get the following theorem:

Theorem 3. Every completely continuous transformation of the space Σ into itself is the strong limit of a sequence of singular transformations.