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Abstract

Hochschild (co)homology and Pirashvili’s higher order Hochschild
(co)homology are useful tools for a variety of applications including defor-
mations of algebras. When working with higher order Hochschild
(co)homology, we can consider the (co)homology of any commutative alge-
bra with symmetric coefficient bimodules, however traditional Hochschild
(co)homology is defined for any associative algebra with not necessarily sym-
metric coefficient bimodules. In the present paper, we generalize higher
order Hochschild (co)homology to work with associative algebras which need
not be commutative and in particular, show that simplicial sets admit such a
generalization if and only if they are one dimensional.

Introduction

Hochschild (co)homology was first introduced in 1945 by Hochschild in [10].
Since then, mathematicians have found Hochschild (co)homology to be incredi-
bly useful for a variety of applications. In the past couple decades, energy has
been placed into generalizing Hochschild’s construction. One generalization,
higher order Hochschild homology was introduced by Pirashvili in [16]. This
construction assigns a chain complex to any simplicial set, provided the alge-
bra is commutative and the bimodule is symmetric. More recently, the author
has worked to generalize Pirashvili’s construction to work with multimodules,
modules that have more than one action (see [2]). It is the aim of the present
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paper to further generalize this construction to noncommutative algebras. In
particular, we will here determine a list of all simplicial sets whose Hochschild
(co)homology is defined even when working over noncommutative algebras. We
do so by finding the “maximal” algebraic structure allowed by each simplicial
set X•. The main result found here is that the Hochschild (co)homology of X• is
defined over a noncommutative algebra A if and only if X• is a one dimensional
simplicial set.

Given a field, k, k-algebra, A and an A-bimodule, M, we can associate a chain
complex C•(A, M), whose homology was introduced by Hochschild in [10] and
is referred to as the Hochschild homology of A with coefficients in M. To define
C•(A, M), let

Cn(A, M) : = M ⊗ A⊗n

and differentials be given by

δn =
n

∑
i=0

(−1)idi

where di : M ⊗ A⊗n → M ⊗ A⊗n−1 are defined as follows:

di(m ⊗ a1 ⊗ a2 ⊗ · · · ⊗ an) =







ma1 ⊗ a2 ⊗ · · · ⊗ an i = 0
m ⊗ a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an 1 ≤ i ≤ n − 1
anm ⊗ a1 ⊗ · · · ⊗ an−1 i = n

It can be observed that the construction above describes a simplicial k-module
associated to a simplicial model of S1. Furthermore, Pirashvili illustrated in [16]
that we can start with any arbitrary finite simplicial set and construct a simplicial
k-module whose associated homology (of the complex given by alternating face
maps) gives a generalization of Hochschild homology, known as higher order
Hochschild homology. For this construction we start with the assumptions that
A is a commutative k-algebra and M is a symmetric A-bimodule. These assump-
tions are necessary as we will see from Theorem 3.1. For example S2 (with the
minimal simplicial decomposition) requires that A be commutative (see Propo-
sition 3.1). For higher order Hochschild homology, consider the Loday functor
L(A, M) from the category of finite pointed sets, Γ to the category of k-modules,
k-mod (see [12, 6.4.4] and [16]), given by

L(A, M) : Γ → k-mod

m+ → M ⊗
⊗

{i∈m+|i 6=0}

A

for objects m+ = {0, 1, · · · , m} ∈ Γ. (where 0 is the fixed element). For morphisms
ϕ : m+ → n+ ∈ Γ let

L(A, M)ϕ(m ⊗ a1 ⊗ · ⊗ am) = (b0m ⊗ · · · ⊗ bn)

where
bi = ∏

{j∈m+|j 6=0,ϕ(j)=i}

aj.
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Similarly we have a functor [8]

H(A, M) : Γ → k-mod

m+ → hom(
⊗

{i∈m+|i 6=0}

A, M)

where for a map ϕ : m+ → n+ and map f :
⊗

{i∈n+|i 6=0} A → M we have

H(A, M)ϕ( f )(a1 ⊗ · · · ⊗ am) = b0 f (b1 ⊗ · · · ⊗ bn)

where
bi = ∏

{j∈m+|j 6=0,ϕ(j)=i}

aj.

It was realized by Pirashvili in [16, 3.1] that for any finite simplicial set X•,
we can consider the chain complex (after defining differentials to be the sums of
alternating face maps)

∆op X•−→ Γ
L(A,M)
−−−−→ k-mod

or similarly the cochain complex (see [8])

∆op X•−→ Γ
H(A,M)
−−−−→ k-mod.

The resulting homologies are referred to as higher order Hochschild homology
and higher order Hochschild cohomology respectively.

To see how this generalizes traditional Hochschild (co)homology we consider
the minimal simplicial decomposition of the pointed simplicial set S1

• : ∆op → Γ

(with one non-degenerate 1-simplex). We have a simplicial k-module

∆op S1
•−→ Γ

L(A,M)
−−−−→ k-mod

which gives the Hochschild chain complex. The associated cochain complex

∆op S1
•−→ Γ

H(A,M)
−−−−→ k-mod is the Hochschild cochain complex. The resulting

homologies are known as Hochschild homology of A with coefficients in M and
Hochschild cohomology of A with coefficients in M respectively.

Hochschild (co)homology and higher order Hochschild (co)homology have
been shown to be incredibly useful tools for a variety of concepts. Hochschild
cohomology and higher order Hochschild cohomology have been used to study
deformations of algebras and modules (for example see [5], [6], [7], [11], [12],
[17] and [18]). The ability to use higher order Hochschild cohomology for addi-
tional deformations is a primary inspiration for this work. One has to wonder if
deformations of noncommutative algebras would be possible in the higher order
setting and this paper seeks to provide those studying deformation theory with
an answer about the types of algebras allowed.

One thing that can be noticed when considering the history of Hochschild
cohomology is that traditional Hochschild (co)homology is of any associative
k-algebra, A with coefficients in any A-bimodule, M, however higher order
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Hochschild (co)homology was restricted to commutative k-algebras with coef-
ficients in symmetric A-bimodules. In [2] the author generalizes the higher order
Hochschild construction to have coefficients in not necessarily symmetric mul-
timodules (see Definition 1.1). The modules that can be used depend heavily
on the simplicial sets that the (co)chain complexes are built over. In this paper
we aim to generalize higher order Hochschild (co)homology to work with not
necessarily commutative algebras and not necessarily symmetric multimodules.
In particular, we will show that simplicial sets allow such a generalization to
noncommutative algebras if and only if they are one dimensional. We will do
so by demonstrating the best case scenario for each simplicial set. Our construc-
tion for all arbitrary simplicial sets is in line with Pirashvili and Richter’s con-
struction in [15] (see Subsection 2.1) where they gave a description of a simplicial
noncommutative circle as a functor from the simplicial category, ∆op to the cate-
gory of finite noncommutative sets, which allowed them to construct Hochschild
(co)homology (as well as other homologies of functors) with not necessarily com-
mutative algebras and not necessarily symmetric bimodules.

While this paper is focused on simplicial sets and Pirashvili’s generalization, it
is worth mentioning that there are additional equivalent generalizations.
In particular, Lurie’s topological chiral homology (see [13]), which is equivalent
to Francis’s factorization homology (see [4]) is a generalization of Hochschild
homology, which associates to a n-framed manifold N and little n-cubes alge-
bra A, a chain complex. When N is S1, and A is an associative algebra, it has
been shown by both Lurie and Francis that the chain complex is equivalent to the
traditional Hochschild chain complex. Furthermore, Ginot, Tradler and Zeina-
lian have shown in [9] that for a commutative algebra A and n-framed manifold
N, factorization/topological chiral homology is equivalent to the higher order
Hochschild chain complex. For direct constructions of these chain complexes,
see [14]. In [1], Ayala and Francis have even shown that there is an equivalence
between the category of little n-cubes algebras and homology theories of n-framed
manifolds via factorization homology.

0.1 Organization of Paper

In Section 1, we provide background knowledge about the authors previous work
on coefficient modules. In Section 2 we describe how to construct the higher order
Hochschild cohomology cochain complex for algebras which are not necessarily
commutative. We do so by describing the necessary characteristics a simplicial
set must have in order to work with noncommutative algebras, which amounts
to considering orderings on fibers of face maps. Our main theorem is provided in
Section 3. It determines that the only simplicial sets that can work with noncom-
mutative algebras are one dimensional. In Section 4 we note that the construction
in this paper can be extended to higher order Hochschild cohomology of pairs of
simplicial sets from [3].
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1 Background

In this paper we fix a field k and denote ⊗k by ⊗. We also choose to work with
finite simplicial sets and any mention of a simplicial set comes with the added
assumption that the simplicial set is finite. We assume that the reader is familiar
with simplicial sets and has some familiarity with Hochschild (co)homology.

1.1 Higher Order Hochschild Cohomology

If we consider the definition of higher order Hochschild homology we notice that
the action of A on M tells us what happens in the M tensor factor of the codomain.
The reason M is not allowed to be a nonsymmetric bimodule is because it would
be difficult in general to determine which of the two actions of A on M to choose
for each face map. In addition, to get a simplicial k-module it is easier to satisfy
the composition laws by choosing one action (which is forced to be both a left
and right action since A is commutative). In [2] the author constructs a general-
ized version of higher order Hochschild cohomology which allows multimodule
coefficients. In order to allow more actions for the coefficient modules and still
get a cosimplicial k-module, we need to make action identifications.

Before proceeding with the main theorem from [2], we provide a definition of
multimodules.

Definition 1.1. Let A be a k-algebra. A left n-multimodule is an abelian group M with
n distinct left A-module structures ιi which commute in the sense that ιi(ai)ιj(aj)m =
ιj(aj)ιi(ai)m for all ai, aj ∈ A, m ∈ M, 1 ≤ i 6= j ≤ n. Similarly, a right
n-multimodule is an abelian group M with n distinct right A-module structures ρi

which commute in the sense that mρi(ai)ρj(aj) = mρj(aj)ρi(ai) for all ai, aj ∈ A,
m ∈ M, 1 ≤ i 6= j ≤ n. Lastly, a left/right (l, r)-multimodule is an abelian group M
which has a left l-multimodule structure as well a right r-multimodule structure, where
left and right actions commute in the sense that (ιi(ai)m)ρj(aj) = ιi(ai)(mρj(aj)) for
all ai, aj ∈ A, m ∈ M, 1 ≤ i ≤ l, 1 ≤ j ≤ r.

We will usually drop the n or (l, r) from our notation and simply call M a
multimodule.

Remark 1.2. There are times when the type of action (left/right) will be unknown.
In these situations we let Λi denote such an action. When we determine whether the
action is left or right (see Proposition 2.1) we can replace Λi with the appropriate nota-
tion (ιi or ρi).

Example 1.3. An A-bimodule M has a left action and a right action so M is an example
of an A left/right (1,1)-multimodule with two actions.

Example 1.4. Let M and N be two A-bimodules. M ⊗ N has an A-bimodule structure
from the left action of A on M and the right action of A on N. If in addition, A is
commutative, then there is an additional module structure coming from the identified
right action of A on M with the left action of A on N in the definition of the tensor
product of modules. In this case, M ⊗ N is a multimodule with three actions.
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For motivation on how multimodules can be used in higher order Hochschild
cohomology, consider the following example.

Example 1.5. Let A be a k-algebra and M be a left/right (2, 2)-multimodule with left
actions ι1 and ι2 and right actions ρ1 and ρ2. We have a cosimplicial k-module with the
nth dimension given by homk(A⊗2n, M) and coface maps are given by

d0 f (a1 ⊗ · · · ⊗ an ⊗ an+1 ⊗ · · · ⊗ a2n) =

ι1(a1)ι2(an+1) f (a2 ⊗ · · · ⊗ an ⊗ an+2 ⊗ · · · ⊗ a2n)

di f (a1 ⊗ · · · ⊗ an ⊗ an+1 ⊗ · · · ⊗ a2n) =

f (a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an ⊗ an+1 ⊗ · · · ⊗ an+ian+i+1 ⊗ · · · ⊗ a2n)

for 0 < i < n
dn f (a1 ⊗ · · · ⊗ an ⊗ an+1 ⊗ · · · ⊗ a2n) =

f (a1 ⊗ · · · ⊗ an−1 ⊗ an+1 ⊗ · · · ⊗ a2n−1)ρ1(an)ρ2(a2n)

By taking the sum of alternating coface maps as differentials, the resulting homology is
the higher order Hochschild cohomology over S1 ∨ S1 of A with coefficients in M.

We now give the main theorem of [2] which tells us how many actions the
coefficient modules for higher order Hochschild cohomology each simplicial set
is allowed by identifying certain actions. Note that when A is commutative, any
left action also satisfies the definition of a right action. The module below is just
assumed to be a multimodule.

Theorem 1.6. [2, 1.1] Let A be a commutative algebra, X• be a simplicial set, and M be
a multimodule, with a (left or right) module structure Λσ

(i,n)
for each n ≥ 0, 0 ≤ i ≤ n,

σ ∈ Xn. Then there is a cosimplicial k-module (A, M, X)• which has n-cosimplices

(A, M, X)n = homk(k ⊗k

⊗

σ∈Xn
σ 6=∗

A, M),

coface maps

di
n f (1 ⊗k

⊗

σ∈Xn+1
σ 6=∗

aσ) = ∏
σ∈Xn+1
di(σ)=∗

(Λσ
(i,n)(aσ)) · f (1 ⊗k

⊗

Ω∈Xn
Ω 6=∗

∏
σ∈Xn+1
di(σ)=Ω

aσ)

and codegeneracy maps

si
n f (1 ⊗k

⊗

σ∈Xn+1
σ 6=∗

aσ) = f (1 ⊗k

⊗

Ω∈Xn+1
Ω 6=∗

1 · ∏
σ∈Xn

si(σ)=Ω

aσ)

provided that the structure maps Λσ
(i,n)

satisfy the following properties:

i) Λσ
(j,n+1)

= Λσ
(i,n+1)

if σ 6= ∗, di(σ) = dj(σ) = ∗ and the dimension of σ is at

least 2 and i < j.
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ii) Λσ
(j,n+1)

= ΛΩ
(j−1),n if di(σ) = Ω, dj(σ) = ∗, dj−1(Ω) = ∗ and the dimension of

σ is at least 2.

iii) ΛΩ
(i,n) = Λ

µ

(j−1,n)
if di(Ω) = ∗, dj−1(µ) = ∗ and there exists a σ of dimension at

least 2 where dj(σ) = Ω, di(σ) = µ and i < j.

iv) ΛΩ
(i,n) = Λσ

(i,n+1)
if di(σ) = ∗, di(Ω) = ∗, dj(σ) = Ω and the dimension of σ is

at least 2.

where Λσ
(i,n)

(a) represents the Λσ
(i,n)

action of a ∈ A whenever 0 ≤ i ≤ n, σ ∈ Xn+1

and di(σ) = ∗.

2 Not Necessarily Commutative Algebras

We would like to develop higher order Hochschild (co)homology to accept non-
commutative algebras, but in order to do so we need to provide an order in which
to multiply elements in the equation from Theorem 1.6. In the following section
we will determine algebras and modules allowed for higher order Hochschild
cohomology and leave it to the reader to check that the same holds for homology.

Definition 2.1. Let X• be a simplicial set and f : Xn → Xm be a map of sets.
By f -ordering of Xn, we mean an ordering of the simplices in each of the f -fibers:
S = {σi| f (σi) = τ} for some τ ∈ Xm.

Now if we consider all di-orderings of Xn we see that this gives a way to
multiply elements of our algebra for each di if A is not necessarily commutative
(where products of elements in each tensor factor are multiplied with elements
represented by smaller simplices on the left and elements represented by larger
simplices on the right). The main issue is that in order for the associated cosim-
plicial k-module to satisfy the cosimplicial identities, we need the di-orderings to
have some compatibilities. We start with the following remark.

Definition 2.2. For any two maps f : Xn → Xm and g : Xm → Xk, given an f -ordering
on Xn and a g-ordering on Xm, there is an induced ordering on Xn called the compo-
sition ordering from g f . For simplices σi and σj in Xn we say that σi < σj in the
composition ordering from g f if and only if σi < σj in the f -ordering or f (σi) < f (σj)
in the g-ordering.

Definition 2.3. Given a simplicial set X• with a choice of simplicial orderings for each
composition of face maps, we say that X• admits a multiplicative ordering if for each
composition of face maps f = dik

· · · di1 : Xn → Xn−k and g = dij+k
· · · dik+1

: Xn−k →

Xn−j−k the composition ordering from g f agrees with the g f -ordering for all g f -fibers
whose image under g f is not the basepoint.

Our goal is to generalize Theorem 1.6 to noncommutative algebras. Thus
far we have considered orderings that will allow us to multiply elements in the
cosimplicial module (A, M, X)• . Notice that we have not considered how this
will affect module actions. To take this into account, we make use of the follow-
ing definition.
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Definition 2.4. A symmetric multimodule is a multimodule for which the actions are
both left and right actions at the same time.

Later, we will see that symmetry is not always necessary (see Remark 3.5), but
when the simplicial set is arbitrary, symmetry is a necessity (see Section 2.2).

Theorem 2.5. Let X• be a simplicial set, A be an associative algebra and M a symmetric
multimodule. The collection of modules and maps (A, M, X)•, d, s of Theorem 1.6 defines
a cosimplicial k-module for any (not necessarily commutative) algebra A and any multi-
module M as in Theorem 1.6 (satisfying the same conditions) if and only if X admits a
multiplicative ordering.

Proof. From [2] we see that if A is a commutative algebra, then (A, M, X)•

exists. To see that (A, M, X)• still exists when A is not necessarily commuta-
tive and X• admits a multiplicative ordering, we first notice that the orderings
of X• give an ordering for the multiplication in each tensor factor for each coface
map in (A, M, X)• . It is straightforward to see that the compatibility of order-
ings, coming from the fact that X• admits a multiplicative ordering forces the
composition of coface maps to be well defined with respect to the order in which
elements in each tensor factor are to be multiplied. For the other direction, notice
if (A, M, X)• exists, then each coface map provides an ordering for the associated
face maps in X•. We see that these orderings must be compatible for (A, M, X)•

to be a well defined cosimplicial k-module, which implies that X• admits a mul-
tiplicative ordering.

2.1 Relationship to Pirashvili and Richter’s construction

In [15], Pirashvili and Richter use a similar approach when defining functor ho-
mology. Starting with the category of pointed noncommutative finite sets Γ(as),
they show that the traditional Hochschild chain complex is given by the compo-
sition of functors

L(A, M) ◦ Ĉ : ∆op → Γ(as) → k-mod

where Γ(as) is defined to be the category of pointed finite sets Γ with the property
that maps have a total ordering on preimages and Ĉ is a lifting of the pointed
simplicial circle C : ∆op → Γ.

This construction is very similar to the way the present paper considers
simplicial sets which admit a multiplicative ordering. In fact, any simplicial set
X• which has a lifting to X̂• : ∆op → Γ(as) will admit a multiplicative order-
ing and thus has the property that (A, M, X)• is a cosimplicial k-module for any
associative algebra A. The main difference between the approach in [15] and the
approach here is that it is conceivable that X• can admit a multiplicative ordering
without inducing f -orderings on the subsets of Xn whose image is the basepoint.
This does not guarantee a lifting X̂• : ∆op → Γ(as). We show that the absence of
an f -ordering on such subsets requires M to have a specific type of action in the
next subsection. In addition, the main goal of Pirashvili and Richter was to con-
struct a generalization of Hochschild and cyclic homology, while the goal in the
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present paper is to provide a description of simplicial sets which still work with
noncommutative algebras. We determine an exact list of simplicial sets in Section
3 by using this approach.

2.2 Module actions

Before getting to the main theorem which determines precisely which simplicial
sets allow noncommutative algebras, we will consider what multimodule actions
arise if A is noncommutative. For a commutative algebra A and A-module M,
it can be seen that any left action is also by definition a right action (we will de-
note such an action as an lr action), but for noncommutative algebras, coefficient
modules need not have lr actions. To see what actions on coefficient modules
need not be lr actions we consider the following proposition.

Proposition 2.1. Let A be a (not necessarily commutative) algebra, X• be a simplicial
set with a multiplicative ordering, M be a multimodule with a module structure Λσ

(i,n)

for each n ≥ 0, 0 ≤ i ≤ n, and σ ∈ Xn For the cosimplicial k-module (A, M, X)•

suppose there exists σ < τ ∈ Xn with dit
· · · di1(σ) = dit

· · · di1(τ) = ω 6= ∗ with

dir · · · dit+1
(ω) = ∗ and dir−1

· · · dit+1
(ω) 6= ∗ then Λ

dr−1···dt+1(ω)
(ir ,n−r)

is necessarily a

• left action if there exists a set of maps djr · · · dj1 = dir · · · di1 with the property that
djl · · · dj1(σ) = ∗ but djl · · · dj1(τ) 6= ∗ for some l < r.

• right action if there exists a set of maps djr · · · dj1 = dir · · · di1 with the property
that djl · · · dj1(τ) = ∗ but djl · · · dj1(σ) 6= ∗ for some l < r.

• lr action if Λ
djr−1

···djk+1
(ω)

(ir ,n−r)
is both a right and left action.

Before providing the proof, consider the following example.

Example 2.6. For the minimal simplicial decomposition of S1, let σ be the nondegenerate
one-dimensional simplex. We have that the following properties are satisfied:

d1s0σ = d1s1σ,

d1d1s0σ = ∗,

d1d1 = d1d2,

d2s1σ 6= ∗

and

d2s0σ = ∗.

If s0σ < s1σ in the d1 ordering we get that Λσ
(1,0)

needs to be a left action by the properties

above. Similarly, we can see that Λσ
(0,0)

needs to be a right action.
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Proof of Proposition 2.1. Let σ, τ and ω be the simplicies from the proposition
above. We will prove the proposition for a right action, but note that an anal-
ogous proof works for left actions. We can assume that there exists 1 ≤ t < s < r
so that

djs · · · dj1(σ) = ∗

djs−1
· · · dj1(σ) 6= ∗

djt · · · dj1(τ) = ∗

djt−1
· · · dj1(τ) 6= ∗

and from [2] Λ
djs−1

···dj1
(σ)

(js,n−s)
= Λ

djt−1
···dj1

(τ)

(jt,n−t)
= Λ

djr−1
···djk+1

(ω)

(ir,n−r)
which we will

simply denote as Λ, but dj1 · · · djr f (−) = di1 · · · dir f (−) and among other
elements, we see that on the left we have aσ followed by aτ acting on f (−) and
on the right we have aσaτ acting on f (−) so we have ( f (−)aσ)aτ = f (−)(aσ aτ)
so Λ is a right action.

This gives whether an action Λ is left/right or an lr action from the perspective
of each simplex. Recall from Theorem 1.6 that there are many action identifica-
tions so to determine if Λ need only be left/right we need to actually consider all
action identifications i.e. if Λσ = Λτ and Λσ is a left action while Λτ is a right
action, then they are both the same lr action.

3 Simplicial sets that work

In general, given a simplicial set X•, it seems that it should be a daunting task to
determine if X• admits a multiplicative ordering. Unfortunately, it turns out that
very few simplicial sets admit a multiplicative ordering. We start by showing
which simplicial sets do not. For a motivating example, we consider a simplicial
model for S2

Proposition 3.1. The minimal simplicial decomposition of S2 with one nondegenerate
0-simplex and one nondegenerate 2-simplex does not admit a multiplicative ordering.

Proof. Consider the 4-simplices [00112], [00122], [01122], [01112]. Each of these sim-
plices is carried to the 2-simplex [012] by the composition of face maps d2d1 =
d1d3. We have a d1-ordering for the sets {[00112], [01112]} and {[00122], [01122]},
but there is also a d3-ordering for the sets {[00112], [00122]} and {[01122], [01112]}.
It can be seen that no ordering of these four simplicies for d2d1 = d1d3 will agree
with both the d3-ordering and the d1-ordering.

One might guess that if S2 does not admit a multiplicative ordering, then it
may not be possible for any simplicial set of dimension equal or greater than
2 to admit a multiplicative ordering. As one might expect, we can only work
with one dimensional simplicial sets (simplicial sets X whose only nondegenerate
simplices are in X0 or X1). This brings us to the main theorem.

Theorem 3.1. Let X• be a simplicial set, then X• admits a multiplicative ordering if and
only if X• is a one dimensional simplicial set.
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Remark 3.2. The implication here is that higher order Hochschild (co)homology of a
noncommutative algebra A only works if the simplicial set is one dimensional.

Before proving Theorem 3.1, let us consider examples of some one dimen-
sional simplicial sets which do admit a multiplicative ordering. We start by
describing a “nicer” ordering on fibers of face maps.

Definition 3.3. We say that a pointed simplicial set X• has a cyclic ordering if for every
n ≥ 1, each set Xn r {∗} has an ordering with the property that if σ, τ ∈ Xn r {∗}
(n ≥ 2) with σ < τ then whenever di(σ) 6= ∗ and di(τ) 6= ∗, di(σ) ≤ di(τ) for all
0 ≤ i ≤ n

Remark 3.4. We can see that a cyclic ordering on any simplicial set X• also provides a
multiplicative ordering on X• by using the same orderings on X• for all face maps (notice
that in both a cyclic ordering and multiplicative ordering we don’t need an ordering on
the fibers over the basepoint). By considering Figure 1 below, we can also identify whether
an action is left, right or lr.

To motivate a proof that all one dimensional simplicial sets admit a multi-
plicative ordering, we start with the following.

Proposition 3.2. Let X• be the minimal simplicial decomposition of
∨

i∈I S1, then X•

has a cyclic ordering.

Proof. First notice that X• has one 1-simplex for each copy of S1 and one degener-
ate 1-simplex for the basepoint ∗. The 1-simplices of X1 r {∗} can be ordered in
any way, so all we need to do is order Xn for larger n. This can be done by giving
a cyclic ordering for each sub-simplicial set S1

•. One such ordering is

S1
1 : [01]

S1
2 : [001] < [011]

S1
3 : [0001] < [0011] < [0111]

S1
4 : [00001] < [00011] < [00111] < [01111]

We call the ordering above a cyclic ordering because we can actually order all
of the S1 n-simplices (including ∗ clockwise around a circle as is done in Figure
1 (starting with ∗ = [0...0] = [1...1]) and see that face maps di have the property
that di(σ) = di(τ) if and only if σ and τ are in the n + 1 − i and n + 2 − i places
around the circle. From this, we can imagine that face maps essentially squeeze
adjacent simplices together and do not change the order.

Remark 3.5. In the above ordering, Λ[0...01] is a left action, while Λ[01...1] is a right action
for each copy of S1. In this case the set of possible actions permitted by ∨i∈IS

1 is twice as
large as I, with half of the actions right and half of the actions left. This demonstrates a fact
that we are already aware of–traditional Hochschild cohomology has the ability to work
with non-commutative algebras and not necessarily symmetric bimodules as coefficient
modules.

We now proceed with the proof of Theorem 3.1.
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[0]=[1]

[00]=[11]

[01]

[000]=[111]

[001] [011]

[0000]=[1111]

[0011]

[0001] [0111]

Figure 1: Cyclic ordering for S1
•

Proof of Theorem 3.1. Suppose X• is n-dimensional where n ≥ 2 and let σ be a
nondegenerate simplex whose dimension is greater than or equal to 2. Follow-
ing a similar argument to the one in the proof of Proposition 3.1 we see that
the simplices s2s0σ, s3s0σ, s3s1σ, s1s1σ are carried to σ via d2d1 = d1d3. We have
a d1-ordering for the sets {s2s0σ, s1s1σ} and {s3s0σ, s3s1σ} but we also have a
d3-ordering for the sets {s2s0σ, s3s0σ} and {s3s1σ, s1s1σ}. As in the proof of Propo-
sition 3.1 we see that this will not allow X• to admit a multiplicative ordering.
Now to see that any one dimensional simplicial set admits a multiplicative order-
ing, we actually show that any one dimensional simplicial set has a cyclic order-
ing. Notice that we can represent any simplex as the composition of degeneracy
maps on a 1-simplex. Let us denote each simplex as follows: let s0s3s1s1σ be de-
noted by [001111]σ if σ is a nondegenerate 1-simplex and [000000]σ otherwise. By
ordering the 1-simplices, we can induce an order on the n-simplices by first order-
ing by subscript, so [−−− · · · −]σ < [−−− · · · −]τ if σ < τ in X1. We then order
alphabetically. For example, if σ < τ in X1 then [001]σ < [011]σ < [001]τ < [011]τ
in X2. It is straight forward that this provides X• with a cyclic ordering.

Remark 3.6. This proof shows that given a simplicial set or dimension 1, one can always
find a cyclic ordering.
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4 Secondary Hochschild cohomology and pairs of simplicial

sets

In [17] Staic introduced secondary Hochschild cohomology which was used to
study B-algebra structures on A[t] given k-algebras A and B with a map
ε : B → A. In [3] the author and Staic show that secondary Hochschild coho-
mology is a version of higher order Hochschild cohomology by generalizing
Hochschild cohomology to pairs of simplicial sets X• ⊆ Y•.

To extend noncommutativity to pairs of algebras A and B we first consider
the simplicial set Y•. If Y• is one dimensional, then A and B can both be non-
commutative. If Y• is not one dimensional B must be commutative. In the second
case, we then consider the simplicial set X•. If X• is one dimensional, then A
need not be commutative, however ε(B) must be in the center of A. For module
coefficients, we simply consider where the action comes from in the simplicial
set.
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