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Abstract

In this paper, we study a uniqueness question of meromorphic functions
concerning certain linear differential polynomials that share a nonzero finite
value with the same of L-functions. The results in this paper extend the cor-
responding results from Li[6] and Li & Li[7].

1 Introduction and main results

In this paper, by L-functions we always mean L-functions that are Dirichlet series

with the Riemann zeta function ζ(s) =
∞

∑
n=1

n−s as the prototype and are impor-

tant objects in number theory. The Selberg class S of L-functions is the set of all

Dirichlet series L(s) =
∞

∑
n=1

a(n)n−s of a complex variable s = σ+ it with a(1) = 1,

satisfying the following axioms (cf.[10, 11]):

(i) Ramanujan hypothesis: a(n) ≪ nε for every ε > 0.

(ii) Analytic continuation: There is a nonnegative integer k such that
(s − 1)kL(s) is an entire function of finite order.
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(iii) Functional equation: L satisfies a functional equation of type ΛL(s) =

ωΛL(1 − s), where ΛL(s) = L(s)Qs
K

∏
j=1

Γ(λjs + νj) with positive real numbers Q,

λj and complex numbers νj, ω with Reνj ≥ 0 and |ω| = 1.

(iv) Euler product hypothesis: L(s) = ∏p exp

(

∞

∑
k=1

b(pk)
pks

)

with suitable coef-

ficients b(pk) satisfying b(pk) ≪ pkθ for some θ < 1/2, where the product is taken
over all prime numbers p.

In the last few years, value distribution of L-functions has been studied ex-
tensively, which can be found, for example in Steuding [11]. Value distribution
of L-functions concerns the distribution of zeros of an L-function L and, more
generally, the c-points of L, i. e., the roots of the equation L(s) = c, or the points
in the pre-image L−1 = {s ∈ C : L(s) = c}, here and throughout the paper, s
denotes the complex variable in the complex plane C and c denotes a value in
the extended complex plane C ∪ {∞}. L-functions can be analytically continued
as meromorphic functions in C. Two meromorphic functions f and g in the com-
plex plane are said to share a value c ∈ C ∪ {∞} IM (ignoring multiplicities) if
f−1(c) = g−1(c) as two sets in C. Moreover, f and g are said to share a value c
CM (counting multiplicities) if they share the value c and if the roots of the equa-
tions f (s) = c and g(s) = c have the same multiplicities. In terms of sharing
values, two nonconstant meromorphic functions in the complex plane must be
identically equal if they share five values IM, and one must be a Möbius transfor-
mation of the other if they share four values CM. The numbers “five” and “four”
are the best possible, as shown by Nevanlinna (cf.[2, 9, 13, 14]), which are famous
theorems due to Nevanlinna and often referred to as Nevanlinnas uniqueness
theorems.

Throughout this paper, by meromorphic functions we will always mean mero-
morphic functions in the complex plane. To prove the main results in the present
paper, we will apply Nevanlinna’s theory and adopt the standard notations of the
Nevanlinna’s theory. We assume that the readers are familiar with the standard
notations which are used in the Nevanlinna’s theory such as the characteristic
function T(r, f ), the proximity function m(r, f ), the counting function N(r, f ) and
the reduced counting function N(r, f ) that are explained in [2, 5, 13, 14]. Here f is
a meromorphic function. It will be convenient to let E denote any set of positive
real numbers of finite linear measure, not necessarily the same at each occurrence.
In addition, we will use the lower order µ( f ) and the order ρ( f ) of a meromor-
phic function f , which can be found, for example in [2, 5, 13, 14], and are in turn
defined as follows:

µ( f ) = lim inf
r→∞

log+ T(r, f )

log r
, ρ( f ) = lim sup

r→∞

log+ T(r, f )

log r
.

For a nonconstant meromorphic function h, we denote by S(r, h) any quantity
satisfying S(r, h) = o(T(r, h)), as r → ∞ and r 6∈ E. We say that a meromorphic
function a is a small function with respect to h, if T(r, a) = S(r, h) (cf.[13]). We
also need the following two definitions:
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Definition 1.1 ([13] and [4, Definition 1]). Let F and G be two nonconstant
meromorphic functions in the complex plane such that F and G share 1 IM. Next

we denote by NL

(

r, 1
F−1

)

the reduced counting function of those common zeros

of F − 1 and G − 1 in |z| < r, where the multiplicity of each such common zero of
F − 1 and G − 1 as the zero of F − 1 is greater than its multiplicity as the zero of

G − 1. We denote by N
1)
E

(

r, 1
F−1

)

the reduced counting function of the common

simple zeros of F − 1 and G− 1 in |z| < r, and denote by N
(2
E

(

r, 1
F−1

)

the reduced

counting function of the common multiple zeros of F − 1 and G − 1 in |z| < r,
where each such common multiple zero of F − 1 and G − 1 has the same mul-

tiplicities. Similarly we can define NL

(

r, 1
G−1

)

, N
1)
E

(

r, 1
G−1

)

and N
(2
E

(

r, 1
G−1

)

.

Also we denote by N1)

(

r, 1
F

)

the reduced counting function of the simple zeros

of F in |z| < r, and denote by N(2

(

r, 1
F

)

the reduced counting function of the

multiple zeros of F in |z| < r.

Definition 1.2 ([2, 13, 14]) Let a be a value in the extended complex plane. We
call

δ(a, f ) = lim inf
r→∞

m
(

r, 1
f−a

)

T(r, f )
= 1 − lim sup

r→∞

N
(

r, 1
f−a

)

T(r, f )

the deficiency of a with respect to f . If δ(a, f ) > 0, a is called a deficient value of

f . Here m
(

r, 1
f−∞

)

means m (r, f ) .

We first recall the following result due to Steuding[11], which actually holds
without the Euler product hypothesis:

Theorem A ([11, p. 152]). If two L-functions L1 and L2 with a(1) = 1 share a
complex value c 6= ∞ CM, then L1 = L2.

Remark 1.1 Recently Hu & Li pointed out that Theorem A is false when c = 1.
A counter example was given by Hu & Li, see [3].

About in 2010, Chung-Chun Yang posed the question that can be found in [6]:

Question A ([6]). If f is a meromorphic function in C that shares three distinct
values a, b CM and c IM with the Riemann zeta function ζ, where c 6∈ {a, b, 0, ∞},
is f equal to ζ ?

In this direction, Li[6] proved the following result:

Theorem B ([6]). Let a, b ∈ C be two distinct values and let f be a meromor-
phic function in C with finitely many poles. If f and a nonconstant L-function L
share a CM and b IM, then L = f .

Remark 1.2. In 2012, Gao and Li completely solved Question A, see [1].

Recently, Li & Li[7] proved the following two theorems:

Theorem C ([7, Theorem 1.3]). Let f and g be two nonconstant entire func-
tions. Suppose that f and g share the value 0 CM, P( f ) and P(g) share the value
1 CM and δ(0, f ) > 1

2 . If ρ( f ) 6= 1, then f = g unless P( f )P(g) = 1.

Theorem D ([7, Theorem 1.4]). Let f and g be two nonconstant entire func-
tions. Suppose that f and g share the value 0 CM, P( f ) and P(g) share the value
1 IM and δ(0, f ) > 4

5 . If ρ( f ) 6= 1, then f = g unless P( f )P(g) = 1.
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Let h be a nonconstant meromorphic function. Next we denote by

P(h) = h(k) + a1h(k−1) + · · ·+ ak−1h′ + akh. (1.1)

the linear differential polynomial of h, where a1, a2 . . . ak are finite complex num-
bers and k ≥ 1 is a positive integer.

Regarding Theorems C and D, one may ask, what can be said about the
relationship between a meromorphic function f with finitely many poles and an
L-function L, if P( f ) and P(L) share 1 CM or IM. In this paper, we will prove the
following general results which extend Theorems C and D respectively:

Theorem 1.1. Let f be a nonconstant meromorphic function with at most
finitely many poles in the complex plane and let L be an L-function such that f
and L share 0 CM, if δ(0, f ) > 4

5 and that P( f ) and P(L) share 1 IM, then f = L.

Proceeding as in the proof of Theorem 1.1, we can get the following result:

Theorem 1.2. Let f be a nonconstant meromorphic function with at most
finitely many poles in the complex plane and let L be an L-function such that f
and L share 0 CM, if δ(0, f ) > 1

2 and that P( f ) and P(L) share 1 CM, then f = L.

The following example shows that the L-function L in Theorems 1.1 and 1.2
can not be replaced with an entire function g that is not an L-function:

Example 1.1 (cf.[7]). Let f (z) = 1
2e−2z and g(z) = e−2z. Then f and g share 0

CM. f ′′ + 2 f ′ and g′′ + 2g′ share 1 CM. Moreover, we can verify that δ(0, f ) > 1
2 ,

but f 6≡ g.

2 Preliminaries

In this section, we will give the following lemmas that play an important role in
proving the main results in this paper:

Lemma 2.1 ([8]). Let f be a nonconstant meromorphic function, and let P(h)
be defined as in (1.1). Then

T(r, P( f )) ≤ T(r, f ) + kN(r, f ) + S(r, f ). (2.1)

Lemma 2.2 ([7, Lemma 2.2]). Suppose that f is a nonconstant meromorphic
function in the complex plane and that a is a small function of f . If f is not a
polynomial, then

N

(

r,
1

P( f )− P(a)

)

≤ T(r, P( f )) − T(r, f ) + N

(

r,
1

f − a

)

+ S(r, f ) (2.2)

and

N

(

r,
1

P( f )− P(a)

)

≤ N

(

r,
1

f − a

)

+ N(r, f ) + S(r, f ). (2.3)

Lemma 2.3 ([7, Lemma 2.3]). Let F and G be nonconstant meromorphic
functions such that F and G share 1 IM. Set

H =
F′′

F′
−

2F′

F − 1
−

G′′

G′
+

2G′

G − 1
. (2.4)
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If H 6≡ 0, then

T(r, F) ≤N

(

r,
1

F

)

+ 2N(r, F) + 2NL

(

r,
1

F − 1

)

+ N

(

r,
1

G

)

+ 2N(r, G) + NL

(

r,
1

G − 1

)

+ S(r, F) + S(r, G). (2.5)

Remark 2.1. By the context of the proof of Lemma 2.3 from [7] and Nevan-
linna’s second fundamental theorem (cf.[Theorem 2.1, 2]), we can find that the
quantities S(r, F) and S(r, G) in (2.5) are such that

S(r, F) = 2m

(

r,
F′

F

)

+ 2m

(

r,
F′

F − 1

)

+ m

(

r,
F′′

F′

)

+ O(1) (2.6)

and

S(r, G) = 2m

(

r,
G′

G

)

+ 2m

(

r,
G′

G − 1

)

+ m

(

r,
G′′

G′

)

+ O(1) (2.7)

respectively. Moreover, by Theorem 2.2 from [2] we have that the quantity S(r, F)
in (2.6) and the quantity S(r, G) in (2.7) are respectively such that if F and G are
of finite order, then

S(r, F) = O(log r) and S(r, G) = O(log r),

as r → ∞, and that if F and G are of infinite order, then

S(r, F) = O(log(rT(r, F))) and S(r, G) = O(log(rT(r, G))),

as r → ∞, possibly out of an exceptional subset E ⊂ (0,+∞) of finite linear
measure.

Remark 2.2. If a is a finite complex value, by (1.1) and the context of the
proof of Lemma 2.2 from [7] and the context of the proof of Lemma 2.1 from [8]
we can see that the quantity S(r, f ) in Lemmas 2.2 and 2.1 is such that

S(r, f ) = m

(

r,
P( f )

f

)

+ O(1) ≤
k

∑
j=1

m

(

r,
f (j)

f

)

+ O(1). (2.8)

Next, in the same manner as in Remark 2.1 we can see that if f is of finite order,
then the quantity S(r, f ) in (2.8) is such that

S(r, f ) = O(log r),

as r → ∞, and that if f is of infinite order, then the quantity S(r, f ) in (2.8) is such
that

S(r, f ) = O(log(rT(r, f ))),

as r → ∞, possibly out of an exceptional subset E ⊂ (0,+∞) of finite linear
measure.

Lemma 2.4 ([12, p.106]). Let f be a nonconstant meromorphic function, and
let k ≥ 1 be a positive integer. Suppose that f is a solution of the differential



230 F. Liu – X.-M. Li – H.-X. Yi

equation a0ω(k) + a1ω(k−1) + · · ·+ akω = 0, where a0, a1, . . . , ak are constants and
a0 6= 0. Then T(r, f ) = O(r). Additionally, if f is a transcendental meromorphic
function, then r = O(T(r, f )).

Lemma 2.5 ([15, Lemma 6]). Let f1 and f2 be two nonconstant meromorphic

functions such that N(r, f j) + N
(

r, 1
f j

)

= S(r), (j = 1, 2). Then, either

N0(r, 1; f1, f2) = S(r) or there exist two integers p and q satisfying |p| + |q| > 0,
such that f

p
1 f

q
2 = 1, where N0(r, 1; f1, f2) denotes the reduced counting function

of the common 1-points of f1 and f2 in |z| < r, T(r) = T(r, f1) + T(r, f2) and
S(r) = o(T(r)), as r 6∈ E and r → ∞. Here E ⊂ (0,+∞) is a subset of finite linear
measure.

Lemma 2.6 ([13, Theorem 1.5]). Suppose that f is a transcendental meromor-
phic function. Then

lim
r→∞

T(r, f )

log r
= ∞.

3 Proof of theorems

Proof of Theorem 1.1. First of all, we denote by d the degree of L. Then

d = 2
K

∑
j=1

λj > 0 (cf.[11, p.113]), where K and λj are respectively the positive

integer and the positive real number in the functional equation of the axiom (iii)
of the definition of L-function. Therefore, by Steuding [11, p.150] we have

T(r, L) =
d

π
r log r + O(r). (3.1)

Next we let P(h) be defined as in (1.1). We consider the following two cases:

Case 1. Suppose that P( f ) and P(L) are not constants. Then, by noting that
f and L share 0 CM and that P( f ) and P(L) share 1 IM, we have by Milloux’
inequality (cf.[2, Theorem 3.2]) that

T(r, f ) ≤ N(r, f ) + N

(

r,
1

f

)

+ N

(

1

P( f )− 1

)

+ S(r, f )

= N

(

r,
1

L

)

+ N

(

1

P(L)− 1

)

+ S(r, f ) + O(log r)

≤ T(r, L) + T(r, P(L)) + S(r, f ) + O(log r). (3.2)

By (1.1), (3.2), Lemma 2.1 and the assumption that an L-function has at most one
pole z = 1 in the complex plane, we get

T(r, f ) ≤ T(r, L) + T(r, L) + kN(r, L) + S(r, f ) + O(log r)

≤ 2T(r, L) + S(r, f ) + O(log r). (3.3)

Similarly we have by (1.1) and the assumptions of Theorem 1.1 that

T(r, L) ≤ 2T(r, f ) + S(r, f ) + O(log r). (3.4)
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Then, by (3.3), the definition of the order of meromorphic functions and the stan-
dard reasoning of removing an exceptional set (cf.[5, Lemma 1.1.1]), we deduce

µ( f ) ≤ µ(L), ρ( f ) ≤ ρ(L). (3.5)

Similarly we have by (3.4) that

µ(L) ≤ µ( f ), ρ(L) ≤ ρ( f ). (3.6)

Therefore, by (3.1), (3.5) and (3.6) we have

µ(L) = µ( f ) = ρ( f ) = ρ(L) = 1. (3.7)

Set
F = P( f ), G = P(L) (3.8)

and let H be defined as in (2.4). Then, by (3.7) and the assumption of Theorem 1.1
we know that F and G share 1 IM.

Suppose that H 6≡ 0. Then, by (3.7), Lemma 2.3 and Remark 2.1 we have

T(r, F) ≤ N

(

r,
1

F

)

+ N

(

r,
1

G

)

+ 2NL

(

r,
1

F − 1

)

+ NL

(

r,
1

G − 1

)

+ O(log r).

(3.9)

By Definition 1.1 we know that each point in NL

(

r, 1
F−1

)

and NL

(

r, 1
G−1

)

is of

multiplicity not less than 2. This together with (2.3), (3.7) and Remark 2.2 gives

NL

(

r,
1

F − 1

)

≤ N

(

r,
1

F′

)

≤ N

(

r,
1

F

)

+ N(r, F) + O(log r) (3.10)

and

NL

(

r,
1

G − 1

)

≤ N

(

r,
1

G′

)

≤ N

(

r,
1

G

)

+ N(r, G) + O(log r). (3.11)

By substituting (3.10) and (3.11) into (3.9) we have

T(r, F) ≤ 3N

(

r,
1

F

)

+ 2N

(

r,
1

G

)

+ O(log r). (3.12)

By taking a = 0 in (2.2) and (2.3) we have by (1.1), (3.7) and Remark 2.2 that

N

(

r,
1

P( f )

)

≤ T(r, P( f )) − T(r, f ) + N

(

r,
1

f

)

+ O(log r) (3.13)

and

N

(

r,
1

P( f )

)

≤ kN (r, f ) + N

(

r,
1

f

)

+ O(log r). (3.14)

Similarly we have

N

(

r,
1

P(L)

)

≤ T(r, P(L)) − T(r, L) + N

(

r,
1

L

)

+ O(log r) (3.15)
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and

N

(

r,
1

P(L)

)

≤ kN (r, L) + N

(

r,
1

L

)

+ O(log r). (3.16)

By noting that f has finitely many poles in the complex plane, and that L has
at most one pole z = 1 in the complex plane, we have by (3.8), (3.12)-(3.14) and
(3.16) that

T(r, f ) ≤ T(r, P( f )) − N

(

r,
1

P( f )

)

+ N

(

r,
1

f

)

+ O(log r) (3.17)

≤ 2N

(

r,
1

P( f )

)

+ 2N

(

r,
1

P(L)

)

+ N

(

r,
1

f

)

+ O(log r)

≤ 3N

(

r,
1

f

)

+ 2N

(

r,
1

L

)

+ O(log r). (3.18)

By noting that f and L share 0 CM, we have by (3.18) that

T(r, f ) ≤ 5N

(

r,
1

f

)

+ O(log r), (3.19)

which contradicts the assumption δ(0, f ) > 4
5 . Therefore H = 0, and so it follows

by (2.4) that

F =
AG + B

CG + D
, (3.20)

where A, B, C and D are finite complex constants satisfying AD − BC 6= 0. Next
we consider the following three subcases:

Subcase 1.1 Suppose that AC 6= 0. By (3.20), we know that A
C is a Picard

exceptional value of F. This together with (3.7), Remark 2.2 and Nevanlinna’s
second fundamental theorem gives

T(r, F) ≤ N

(

r,
1

F

)

+ N

(

r,
1

F − A
C

)

+ O(log r) = N

(

r,
1

F

)

+ O(log r). (3.21)

By (3.7), (3.8), (3.13), (3.14) and Remark 2.2 we deduce (3.17). By (3.8), (3.17) and
(3.21) we have

T(r, f ) ≤ N

(

r,
1

f

)

+ O(log r), (3.22)

which contradicts the assumption δ(0, f ) > 4
5 .

Subcase 1.2 Suppose that A 6= 0 and C = 0. Then F = AG
D + B

D . If B 6= 0,

then N

(

r, 1
F− B

D

)

= N
(

r, 1
G

)

. Combining this with (3.7), (3.8) and Nevanlinna’s

second fundamental theorem, we have

T(r, F) ≤ N

(

r,
1

F

)

+ N

(

r,
1

F − B
D

)

+ N(r, F) + O(log r)

≤ N

(

r,
1

F

)

+ N

(

r,
1

G

)

+ O(log r). (3.23)
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By (3.7), (3.8), (3.13), (3.14) and Remark 2.2 we deduce (3.17). By (3.8), (3.14),
(3.16), (3.17), (3.23), the fact that L has at most one pole z = 1 in the complex
plane and the assumption that f and L share 0 CM we have

T(r, f ) ≤ N

(

r,
1

f

)

+ N

(

r,
1

L

)

+ O(log r) = 2N

(

r,
1

f

)

+ O(log r), (3.24)

which contradicts the assumption δ(0, f ) > 4
5 . Thus B = 0, and so F = A

D G.

Suppose that 1 is a Picard exceptional value of F and G. Then, by the assump-
tion that F and G share 1 IM, we see that A

D is also a Picard exceptional value of F

and G. If A
D 6= 1, then we have

δ(1, F) + δ

(

A

D
, F

)

+ δ(0, F) > 2,

which is impossible. Hence A
D = 1, and so F = G and

P( f ) = P(L). (3.25)

Suppose that 1 is not a Picard exceptional value of F and G, then there is a
complex number z0 such that F(z0) = G(z0) = 1. Therefore, A

D = 1 and so F = G.
Hence (3.25) is also valid.

By rewriting (3.25), we have P( f − L) = 0. This together with (1.1) gives

( f − L)(k) + a1( f − L)(k−1) + · · ·+ ak−1( f − L)′ + ak( f − L) = 0. (3.26)

Then, by (3.26) and Lemma 2.4, we have

T(r, f − L) = O(r). (3.27)

Now we set
f − L = α. (3.28)

Then, α is a meromorphic function. Moreover, by (3.1), (3.27) and (3.28) we have

T(r, α) = o(T(r, L)). (3.29)

Suppose that α 6≡ 0. Then, by (3.28) and the assumption that f and L share the
value 0 CM, we have

N

(

r,
1

f

)

= N

(

r,
1

L

)

≤ N(r,
1

α
) ≤ T(r, α) + O(1) = o(T(r, L)), (3.30)

Now we let

L̃ = −
L

α
. (3.31)

Then, by (3.29) and (3.31) we have

T(r, L) = T(r, L̃) + o(T(r, L)), N

(

r,
1

L̃ − 1

)

= N

(

r,
1

L + α

)

+ o(T(r, L))

(3.32)
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and

N(r, L̃) = N(r, L) + o(T(r, L)), N

(

r,
1

L̃

)

= N

(

r,
1

L

)

+ o(T(r, L)). (3.33)

By (3.7) and (3.31) we deduce ρ(L̃) = ρ(L) = 1. This together with Nevanlinna’s
second fundamental theorem gives

T(r, L̃) ≤ N(r, L̃) + N

(

r,
1

L̃

)

+ N

(

r,
1

L̃ − 1

)

+ O(log r). (3.34)

By (3.28)-(3.34) we have

T(r, L) ≤ N(r, L) + N

(

r,
1

L

)

+ N

(

r,
1

L + α

)

+ O(log r) + o(T(r, L))

≤ 2N

(

r,
1

f

)

+ o(T(r, L)) ≤ o(T(r, L)), (3.35)

which is impossible. Therefore α = 0. Combining this with (3.28), we get the
conclusion of Theorem 1.1.

Subcase 1.3 Suppose that A = 0 and C 6= 0. Then, in the same manner as in
the proof of Subcase 1.2 we can get FG = 1, and so it follows by (3.8) that

P( f )P(L) = 1. (3.36)

We consider the following two subcases:

Subcase 1.3.1 Suppose that P( f ) and P(L) are transcendental meromorphic
functions. Then, by (3.36) and the assumption that P( f ) has at most finitely many
poles in the complex plane, we deduce that P(L) has at most finitely many zeros
in the complex plane. Since L has at most one pole z = 1 in the complex plane,
we can see by (1.1) that P(L) has at most one pole z = 1 in the complex plane.
Therefore, by (3.36) we see that P( f ) has at most one zero z = 1 in the complex
plane. Therefore,

N

(

r,
1

P(L)

)

+ N (r, P(L)) = O(log r) (3.37)

and

N

(

r,
1

P( f )

)

+ N (r, P( f )) = O(log r). (3.38)

Next we prove that ∞ is a Picard exceptional value of P( f ) and P(L). For this
purpose, now we set

f1 =
P( f )

P(L)
, f2 =

P( f )− 1

P(L)− 1
. (3.39)

By (3.39) and the assumption that P( f ) and P(L) are transcendental meromorphic
functions, we have f1 6≡ 0 and f2 6≡ 0. Suppose that one of f1 and f2 is a nonzero
constant. Then, by (3.39) we see that P( f ) and P(L) share ∞ CM. Combining this
with (3.36) we deduce that ∞ is a Picard exceptional value of f and L.
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Next we suppose that f1 and f2 are nonconstant meromorphic functions. Then,
by (3.8) and (3.39), we have

F =
f1(1 − f2)

f1 − f2
, G =

1 − f2

f1 − f2
. (3.40)

By (3.40) we can find that there exists a subset I ⊂ (0,+∞) with infinite linear
measure such that S(r) = o(T(r)) and

T(r, F) ≤ 2(T(r, f1) + T(r, f2)) + S(r) ≤ 8T(r, F) + S(r) (3.41)

or
T(r, G) ≤ 2(T(r, f1) + T(r, f2)) + S(r) ≤ 8T(r, G) + S(r), (3.42)

as r ∈ I and r → ∞, where T(r) = T(r, f1) + T(r, f2). Without loss of generality,
we suppose that (3.41) holds. Then we have S(r) = S(r, F), as r ∈ I and r → ∞.
By (3.36) we see that P( f ) and P(L) share 1 and −1 CM. By noting that P( f ) and
P(L) are transcendental meromorphic functions such that P( f ) and P(L) share 1
CM, by (3.37)-(3.39) and (3.41), we deduce

N

(

r,
1

f j

)

+ N
(

r, f j

)

= o(T(r)), j = 1, 2, (3.43)

as r ∈ I and r → ∞. By noting that P( f ) and P(L) share −1 CM, we deduce by
(3.8), (3.38), (3.40), (3.41) and Nevanlinna’s second fundamental theorem that

T(r, F) ≤ N(r, F) + N

(

r,
1

F

)

+ N

(

r,
1

F + 1

)

+ o(T(r, F))

≤ N

(

r,
1

F + 1

)

+ O(log r) + o(T(r, F))

≤ N0(r, 1; f1, f2) + o(T(r, F)), (3.44)

as r ∈ I and r → ∞. By (3.41) and (3.44) we have

T(r, f1) + T(r, f2) ≤ 4N0(r, 1; f1, f2) + o(T(r)), (3.45)

By (3.39), (3.43), (3.45) and Lemma 2.5 we find that there exist two relatively prime
integers s and t satisfying |s| + |t| > 0, such that f s

1 f t
2 = 1. Combining this with

(3.8) and (3.39), we have
(

F

G

)s( F − 1

G − 1

)t

= 1. (3.46)

We consider the following three cases:

Suppose that st < 0, say s > 0 and t < 0, say t = −t1, where t1 is some
positive integer. Then, (3.46) can be rewritten as

(

F

G

)s

=

(

F − 1

G − 1

)t1

. (3.47)

Let z1 ∈ C be a pole of F of multiplicity p1 ≥ 1. Then, by FG = 1 we can see
that z1 be a zero of G of multiplicity p1. Therefore, by (3.47) we deduce that
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2s = t1 = −t. Combining this with the assumption that s and t are two rela-
tively prime integers we have s = 1 and t = −2, and so (3.47) can be rewritten as
F(G − 1)2 = G(F − 1)2, which is equivalent to FG = 1. Combining this with the
assumption that f has at most finitely many poles in the complex plane, and the
fact that an L-function has at most one pole z = 1 in the complex plane, we have
by (3.8) that

P(L(z)) =
P1(z)

(z − 1)s
eα1(z), P( f (z)) =

(z − 1)s

P1(z)
e−α1(z), (3.48)

where P1 is a nonzero polynomial, s1 ≥ 0 is some integer and that α1 is a non-
constant entire function. Moreover, by (3.1) and the definition of the order of
meromorphic functions we deduce

ρ(eα1) = ρ(P(L)) ≤ 1,

where implies that α1 is a polynomial of degree equal to 1, say

α1(z) = A1z + B1, (3.49)

where A1 6= 0 and B1 are constants. By Hayman [2, p.7] we have

T(r, eA1z+B1) =
|A1|r

π
(1 + o(1)) . (3.50)

By (1.1), (3.4), (3.7) and Remark 2.2 we have

T(r, L) ≤ 2T(r, f ) + O(log r). (3.51)

By (3.1), (3.49), (3.50) and (3.51) we have

T

(

r,
(z − 1)s1

P1(z)
e−α1(z)

)

=
|A1|r

π
(1 + o(1)) + O(log r) = o(T(r, f )). (3.52)

By (1.1) and (3.48) we have

1

f
=

1
(z−1)s1

P1(z)
e−α1(z)

(

ak + ak−1
f ′

f
+ ... + a1

f (k−1)

f
+

f (k)

f

)

. (3.53)

By (3.7), (3.52), (3.53) and Remark 2.2 we deduce

m

(

r,
1

f

)

≤ O(log r) + o(T(r, f )). (3.54)

By noting that f is a transcendental meromorphic function, we have by (3.54) and
Lemma 2.6 that

δ(0, f ) = lim inf
r→∞

m
(

r, 1
f

)

T(r, f )
= 0, (3.55)

which contradicts the assumption δ(0, f ) > 4
5 .
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Suppose that one of s and t is equal to zero. Then, by (3.46) we can see that F
and G share ∞ CM, this together with the supposition FG = 1 implies that ∞ is a
Picard exceptional value of F and G.

Suppose that st > 0, say s > 0 and t > 0. Then, by (3.46) we can see that F
and G share ∞ CM. This together with the assumption FG = 1 implies that ∞ is
a Picard exceptional value of F and G.

Combining this with (3.8) and Hadamard’s product (cf.[2, Theorem 1.9]), we
have

G(z) = P(L(z)) = eA2z+B2 , (3.56)

where A2 6= 0 and B2 are constants. By (1.1), (3.8) and (3.56) we have

P(L(z)) = L(k)(z) + a1L(k−1)(z) + · · ·+ ak−1L′(z) + akL(z) = eA2z+B2. (3.57)

By (3.57) we have

A2L(k)(z) + A2a1L(k−1)(z) + · · ·+ A2ak−1L′(z) + A2akL(z) = A2eA2z+B2 (3.58)

and

L(k+1)(z) + a1L(k)(z) + · · ·+ ak−1L′′(z) + akL′(z) = A2eA2z+B2 . (3.59)

By (3.58) and (3.59), we have

L(k+1) + (a1 − A2)L(k) + · · ·+ (ak − A2ak−1)L′ − A2akL = 0. (3.60)

By (3.60) and Lemma 2.4 we have T(r, L) = O(r), which contradicts (3.1).

Subcase 1.3.2 Suppose that F and G are nonzero rational functions. Then, by
(3.8), the supposition FG = 1 and the fact that an L-function has at most one pole
z = 1 in the complex plane, we have

P(L(z)) =
P2(z)

(z − 1)s2
, P( f (z)) =

(z − 1)s2

P2(z)
, (3.61)

where P2 is a nonzero polynomial and that s2 ≥ 0 is some integer. By (1.1) and
(3.61) we have

P( f ) = f (k) + a1 f (k−1) + · · ·+ ak−1 f ′ + ak f =
(z − 1)s2

P1
, (3.62)

and so
f (k)

f
+

a1 f (k−1)

f
+ · · ·+

ak−1 f ′

f
+ ak =

(z − 1)s2

P1 f
. (3.63)

By (3.7), (3.63) and Remark 2.2 we have

m

(

r,
1

f

)

+ O(log r) = m

(

r,
(z − 1)s2

P1 f

)

≤
k

∑
j=1

m

(

r,
f (j)

f

)

+ O(1) ≤ O(log r).

(3.64)
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By noting that f is a transcendental meromorphic function we deduce by (3.64)
and Lemma 2.6 that (3.55) holds, which also contradicts the assumption
δ(0, f ) > 4

5 .

Case 2 Suppose that one of P( f ) and P(L) is a constant, say

P( f ) = c, (3.65)

where c is a finite complex constant. Then, by (3.65), we have

f (z) = c1 +
m

∑
j=1

qj(z)e
βj z, (3.66)

where c1 is finite complex constant, qj(1 ≤ j ≤ m) are nonzero polynomials and
β j(1 ≤ j ≤ m) are distinct finite nonzero complex constants. Here m ≥ 1 is a
positive integer. Also by (1.1) and (3.65) we have

f (k+1) + a1 f (k) + · · ·+ ak−1 f ′′ + ak f ′ = 0. (3.67)

By (3.67) and Lemma 2.4 we have

T(r, f ) = O(r). (3.68)

By (3.7), (3.68), Hadamard’s product (cf.[2, Theorem 1.9]), the assumption that f
has at most finitely many poles in the complex plane, the assumption that f and
L share the value 0 CM and the fact that L has at most one pole z = 1 in the
complex plane, we have

L(z) =
P3(z)

(z − 1)s3
eA3(z)+B3 f (z), (3.69)

where P3 is a nonzero polynomial, s3 ≥ 0 is some integer, A3 6= 0 and B3 are
constants. By substituting (3.66) into (3.69) we have

L(z) =
P3(z)

(z − 1)s3
eA3(z)+B3

(

c1 +
m

∑
j=1

qj(z)e
βj z

)

. (3.70)

By (3.70) and Hayman [2, p. 7] we deduce

T(r, L) ≤ O(r) + O(log r),

which contradicts (3.1). This completes the proof of Theorem 1.1.

Proof of Theorem 1.2. First of all, in the same manner as in the proof of
Theorem 1.1 we have (3.1). Next we let P(h) be defined as in (1.1). We consider
the following two cases:

Case 1. Suppose that P( f ) and P(L) are not constants. Then, by noting that
f and L share 0 CM and that P( f ) and P(L) share 1 CM, we have by Milloux’
inequality (cf.[2, Theorem 3.2]) that (3.2)-(3.7) still hold. Again we set (3.8) and
let H be defined as in (2.4). Then, by (3.8) and the assumption of Theorem 1.2 we
know that F and G share 1 CM.
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Suppose that H 6≡ 0. Then, by (3.7), Lemma 2.3 and Remark 2.1 we know that
(3.9) is rewritten as

T(r, F) ≤ N

(

r,
1

F

)

+ N

(

r,
1

G

)

+ O(log r). (3.71)

By taking a = 0 in (2.2) and (2.3) we have by (1.1), (3.7) and Remark 2.2 that (3.13)-
(3.16) still hold. By noting that f has at most finitely many poles in the complex
plane, and that L has at most one pole z = 1 in the complex plane, we have by
(3.8), (3.13), (3.14), (3.16) and (3.71) that

T(r, f ) ≤ T(r, P( f )) − N

(

r,
1

P( f )

)

+ N

(

r,
1

f

)

+ O(log r)

≤ N

(

r,
1

P(L)

)

+ N

(

r,
1

f

)

+ O(log r)

≤ N

(

r,
1

L

)

+ N

(

r,
1

f

)

+ O(log r). (3.72)

By noting that f and L share 0 CM, we have by (3.72) that

T(r, f ) ≤ 2N

(

r,
1

f

)

+ O(log r), (3.73)

which contradicts the assumption δ(0, f ) > 1
2 . Therefore H = 0, and so we have

(3.20). Next, in the same manner as in Subcases 1.1-1.3 in the proof of Theorem
1.1 we get a contradiction.

Case 2 Suppose that one of P( f ) and P(L) is a constant, say (3.65) holds.
Then, in the same manner as in Case 2 of the proof of Theorem 1.1 we can get a
contradiction. This completes the proof of Theorem 1.2.
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