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Abstract

In this paper, we prove some tripled fixed point theorems for Meir-Keleer
condensing operator in a Banach space by using L-functions. We apply these
results to establish the existence of solutions for a system of functional inte-
gral equations of Volterra type.

1 Introduction and preliminaries

The degree of noncompactness of a set is measured by means of functions called
measures of noncompactness. The first measure of noncompactness, the func-
tion α, was defined and studied by Kuratowski [24] in 1930. Darbo [16] used this
measure to generalize both the Schauder’s fixed point theorem and the Banach’s
contraction principle for so called condensing operators. The Hausdorff MNC
χ was introduced by Goldenstein, Gohberg and Markus [20] in 1957 and later
studied by Goldenstein and Markus [21]. Another measure of noncompactness β
was introduced by Istrăţescu [22] in 1972. Measures of noncompactness are very
useful tools which are widely used in fixed point theory, differential equations,
functional equations, integral and integro-differential equations, and optimiza-
tion etc. [11]. In recent years measures of noncompactness have also been used
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in defining geometric properties of Banach spaces as well as in characterizing
compact operators between sequence spaces, e.g. [30].

For a bounded subset Q of a metric space E, the Kuratowski measure of non-
compactness (α-measure or set measure of noncompactness) of Q is defined by

α(Q) = inf

{

ǫ > 0 : Q ⊂
n
⋃

i=1

Si : Si ⊂ E, diam(Si) < ǫ (i = 1, ..., n); n ∈ N

}

.

Another measure of noncompactness is the Hausdorff measure of noncompact-
ness (χ-measure or ball measure of noncompactness), which is more applicable
in many cases. It is defined by the formula

χ(Q) = inf{ε > 0 : Q has a finite ε-net in E}.

The two measures χ and α share many properties [7, 10]. Here, we recall
some basic facts concerning measures of noncompactness (c.f. [10]). We denote
the set of real numbers by R and put R+ = [0, Â + ∞). Let (E, ‖.‖) be a Banach
space. The symbol Q, ConvQ will denote the closure and closed convex hull of a
subset Q of E, respectively. Moreover, let ME indicate the family of all nonempty
and bounded subsets of E and NE indicate the family of all nonempty and rela-
tively compact subsets of E.

Definition 1.0. A mapping µ : ME −→ R+ is said to be a measure of noncom-
pactness in E if it satisfies the following conditions:

1◦ The family kerµ = {Q ∈ ME : µ(Q) = 0} is nonempty and kerµ ⊆ NE.

2◦ Q1 ⊂ Q2 =⇒ µ(Q1) ≤ µ(Q2).

3◦ µ(Q) = µ(Q).

4◦ µ(ConvQ) = µ(Q).

5◦ µ(λQ1 + (1 − λ)Q2) ≤ λµ(Q1) + (1 − λ)µ(Q2) for λ ∈ [0, 1].

6◦ If {Qn} is a sequence of closed sets from ME such that Qn+1 ⊂ Qn for
n = 1, 2, · · · , and if limn→∞ µ(Qn) = 0, then Q∞ = ∩∞

n=1Qn 6= ∅.

We say that a measure of noncompactness is regular [10] provided it satisfies
additionally the following conditions:

7◦ µ(Q1 ∪ Q2) = max{µ(Q1), µ(Q2)}.

8◦ µ(Q1 + Q2) ≤ µ(Q1) + µ(Q2).

9◦ µ(λQ) = |λ|µ(Q) for λ ∈ R.

10◦ kerµ = NE.
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For example, α and χ are regular measures of noncompactness on Q.

Definition 1.1. [7] Let E1 and E2 be two Banach spaces and µ1 and µ2 be
arbitrary measures of noncompactness on E1 and E2 respectively. An operator
T from E1 to E2 is called a (µ1, µ2)-condensing operator if it is continuous and for
every bounded noncompact set Ω ⊂ E1 such that for Ω /∈ ker µ1, the following
inequality holds

µ2(T(Ω)) < µ1(Ω).

The contractive maps and the compact maps are condensing if we take as
measures of noncompactness the diameter of a set and the indicator function of a
family of non-relatively compact sets, respectively [7]. In 1955, Darbo published
a fixed point theorem [16], using the concept of measures of noncompactness,
which guarantees the existence of fixed point for condensing operators. Darbo’s
theorem has provided an abundance of applications in the existence of solutions
for differential and integral equations (c.f. [2, 3, 4, 9, 12, 13, 14, 17, 18, 27, 28, 29]).
It extends both the classical Schauder’s fixed point theorem and the Banach’s
contraction principle.

In 1969, Meir and Keeler [26] proved the following very interesting fixed-
point theorem, which is a generalization of the Banach contraction principle [8].

Definition 1.2. [26] Let (X, d) be a metric space. A mapping T on X is said to be a
Meir-Keeler contraction (MKC, for short) if for any ε > 0, there exists δ > 0 such
that

ε ≤ d(x, y) < ε + δ ⇒ d(Tx, Ty) < ε,

for all x, y ∈ X.

Definition 1.3. [5] Let C be a nonempty subset of a Banach space E and µ an
arbitrary measure of noncompactness on E. We say that an operator T : C −→ C
is a Meir-Keeler condensing operator if for any ε > 0, there exists δ > 0 such that

ε ≤ µ(X) < ε + δ ⇒ µ(T(X)) < ε, (1.1)

for any bounded subset X of C.

Lim [25] introduced the notion of L-functions and characterized Meir-Keeler
contractions in metric spaces.
Definition 1.4. (Lim [25]) A function ϕ from R+ into itself is called an L-function
if ϕ(0) = 0, ϕ(s) > 0 for s ∈ (0,+∞), and for every s ∈ (0,+∞) there exists δ > 0
such that ϕ(t) ≤ s, for all t ∈ [s, s + δ].

Definition 1.5. (Lim [5]) We say that θ : R+ −→ R+ is a strictly L-function if
θ(0) = 0, θ(s) > 0 for s ∈ (0,+∞), and for every s ∈ (0,+∞) there exists δ > 0
such that θ(t) < s, for all t ∈ [s, s + δ].

The following results are given in [5] which are very useful in our study.
Theorem 1.1. Let C be a nonempty, bounded, closed and convex subset of a
Banach space E and µ be an arbitrary measure of noncompactness on E.
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If T : C −→ C is a continuous and Meir-Keeler condensing operator, then T
has at least one fixed point and the set of all fixed points of T in C is compact.

Theorem 1.2. Let C be a nonempty and bounded subset of a Banach space E,
µ an arbitrary measure of noncompactness on E and T : C −→ C be a continuous
operator. Then T is a Meir-Keeler condensing operator if and only if there exists
an L-function ϕ such that

µ(TX) < ϕ(µ(X)), (1.2)

for all X ∈ ME with µ(X) 6= 0.

Corollary 1.3. Let C be a nonempty, bounded, closed and convex subset of a
Banach space E and let T : C −→ C be a continuous operator such that

µ(TX) < ϕ(µ(X)),

for each X ⊆ C, where µ is an arbitrary measure of noncompactness and ϕ is an
L-function. Then T has at least one fixed point and the set of all fixed points of T
in C is compact.

Theorem 1.4. Let C be a nonempty, bounded, closed and convex subset of a
Banach space E and let T : C −→ C be a continuous operator such that

µ(TX) ≤ θ(µ(X)), (1.3)

for each X ⊆ C, where µ is an arbitrary measure of noncompactness and θ is a
strictly L-function. Then T has at least one fixed point and the set of all fixed
points of T in C is compact.

Corollary 1.5. Let C be a nonempty, bounded, closed and convex subset of a
Banach space E and let F : C −→ E be an operator such that

‖Fx − Fy‖ ≤ θ(‖x − y‖), (1.4)

where θ is a nondecreasing and right continuous strictly L-function. Let G : C −→
E be a compact and continuous operator. Define T(x) := F(x)+G(x) and assume
that T(x) ∈ C for all x ∈ C. Then T has a fixed point in C and the set of all fixed
points of T in C is compact.

Recently, Karakaya et. al. [23] proved a tripled fixed point theorem for a
class of condensing operators in Banach spaces. In this paper we prove some
tripled fixed point theorems for Meir-Keleer condensing operator in a Banach
space using L-functions via measures of noncompactness. Furthermore, we
apply our results to establish the existence of solutions for a system of functional
integral equations of Volterra type.
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2 Tripled fixed point results for trivariate Meir-Keeler condens-

ing operators

In this section we introduce the notion of a trivariate Meir-Keeler condensing
operator and prove some tripled fixed point results.
Definition 2.1. [15] An element (x, y, z) ∈ X × X is called a tripled fixed point of
the operator F : X × X × X −→ X if F(x, y, z) = x, F(y, x, z) = y and F(z, y, x) =
z.

Theorem 2.1. [10] Suppose µ1, µ2, · · · , µn are measures of noncompactness on
Banach spaces E1, E2, · · · , En, respectively. Moreover assume that the function
F : R

n
+ −→ R+ is convex and F(x1, · · · , xn) = 0 if and only if xi = 0 for

i = 1, 2, · · · , n. Then

µ(X) = F(µ1(X1), µ2(X2), · · · , µn(Xn))

defines a measure of noncompactness on E1 × E2 × · · · × En where Xi denotes the
natural projections of X into Ei for i = 1, 2, · · · , n.

Similar to [6] we can construct the following example.
Example 2.1. Let µ be a measure of noncompactness on a Banach space E. If we
consider F1(x, y, z) = max{x, y, z} and F2(x, y, z) = x+ y+ z for x, y, z ∈ R

3
+, then

conditions of Theorem 2.1 are satisfied. Therefore, µ̃1(X) := max{µ(X1), µ(X2),
µ(X3)} and µ̃2(X) := µ(X1) + µ(X2) + µ(X3) define measures of noncompact-
ness in the space E × E × E where Xi denotes the natural projections of X into Ei

for i = 1, 2, 3.

Now, we define the notion of a trivariate Meir-Keeler condensing operator
and use to prove our first result.
Definition 2.2. Let C be a nonempty subset of a Banach space E and µ an arbitrary
measure of noncompactness on E. We say that T : C × C × C −→ C is a Meir-
Keeler condensing operator if for any ε > 0, there exists δ > 0 such that

ε ≤ max{µ(X1), µ(X2), µ(X3)} < ε + δ =⇒ µ(T(X1 × X2 × X3)) < ε (2.1)

for any bounded subsets X1, X2, X3 of C.

Theorem 2.2. Let C be a nonempty, bounded closed and convex subset of a
Banach space E and µ an arbitrary measure of noncompactness on E.
If T : C × C × C −→ C is a continuous Meir-Keeler condensing operator then
T has at least one tripled fixed point.
Proof. From Example 2.1, we note that µ̃1(X) := max{µ(X1), µ(X2), µ(X3)} for
any bounded subset X ⊂ E × E × E defines a measure of noncompactness on
E × E × E where Xi denotes the natural projections of X into Ei for i = 1, 2, 3.
Also the operator G : C × C × C −→ C × C × C given by

G(x, y, z) := (T(x, y, z), T(y, x, z), T(z, y, x))
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is clearly continuous on C × C × C. Now we claim that G satisfies all the condi-
tions of Theorem 1.1. To prove this, let ε > 0 and δ(ε) > 0 be as in Definition 2.2.
If X is a bounded subset of C × C × C such that

ε ≤ µ̃(X) < ε + δ

then
ε ≤ max{µ(X1), µ(X2), µ(X3)} < ε + δ.

By 2◦ of Definition 1.0 and (2.1), we get

µ̃(G(X))

≤ µ̃(T(X1 × X2 × X3)× T(X2 × X1 × X3)× T(X3 × X2 × X1)} < ε + δ

= max{µ(T(X1 × X2 × X3)), µ(T(X2 × X1 × X3)), µ(T(X3 × X2 × X1))}

< ε.

Hence, from Theorem 1.1, G has at least one fixed point in C × C × C. Now the
conclusion of theorem follows from the fact that every fixed point of G is a tripled
fixed point of T.

This completes the proof of the theorem.

Now, we prove a tripled fixed point theorem by using L-functions.
Theorem 2.3. Let C be a nonempty, bounded closed and convex subset of a
Banach space E and ϕ an L-function. Suppose that for any measure of noncom-
pactness µ on E,the continuous operator T : C × C × C −→ C satisfies

µ(T(X1 × X2 × X3)) <
1

3
ϕ (µ(X1) + µ(X2) + µ(X3)) , (2.2)

for any subsets X1, X2, X3 of C. Then G has at least one tripled fixed point.
Proof. Similarly to the proof of Theorem 2.2, we define a mapping G : C × C ×
C −→ C × C × C by

G(x, y, z) := (T(x, y, z), T(y, x, z), T(z, y, x))

which is continuous. On the other hand, from Example 2.1, we have µ̃(X) :=
µ(X1)+µ(X2)+µ(X3) which defines a measure of noncompactness on E× E× E
where X1, X2, X3 denote the natural projections of X. Now let X ⊂ C × C × C be
any nonempty subset. Then by 2◦ of Definition 1.0 and (2.2) we obtain

µ̃(G(X))

≤ µ̃(T(X1 × X2 × X3)× T(X2 × X1 × X3)× T(X3 × X2 × X1)} < ε + δ

= µ(T(X1 × X2 × X3)) + µ(T(X2 × X1 × X3)) + µ(T(X3 × X2 × X1))

< ϕ(µ(X1) + µ(X2) + µ(X3))

≤ ϕ(µ̃(X)).

Therefore, all the conditions of Corollary 1.3 are satisfied. Hence G has a fixed
point or equivalently T has a tripled fixed point.
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This completes the proof of the theorem.

Our next result is a consequence of Theorem 1.4.
Theorem 2.4. Let C be a nonempty, bounded closed and convex subset of a Ba-
nach space E and θ a strictly L-function. Suppose that for any measure of non-
compactness µ on E,the continuous operator T : C × C × C −→ C satisfies

µ(T(X1 × X2 × X3)) ≤
1

3
θ (µ(X1) + µ(X2) + µ(X3)) , (2.3)

for any subsets X1, X2, X3 of C. Then G has at least one tripled fixed point.
Proof. Its proof is similar to the proof of Theorem 2.2.

Corollary 2.5. Let C be a nonempty, bounded, closed and convex subset of a
Banach space E and let F : C × C × C −→ E be an operator such that

‖F(x, y, z)− F(u, v, w)‖ ≤
1

3
θ(‖x − u‖+ ‖y − v‖+ ‖z − w‖) (2.4)

where θ is a nondecreasing and upper semicontinuous strictly L-function. As-
sume that G : C × C × C −→ E is a compact, continuous operator. Define
T(x, y, z) := F(x, y, z) + G(x, y, z) and assume that T(x, y, z) ∈ C for all x, y.z ∈ C.
Then F has at least a tripled fixed point.
Proof. Let µ : ME → R+ be Kuratowski measure of noncompactness. Moreover,
let X1, X2, X3 be nonempty subsets of C. Since θ is nondecreasing, by (2.4) we
have

‖F(x, y, z) − F(u, v, w)‖ ≤
1

3
θ(‖x − u‖+ ‖y − v‖+ ‖z − w‖)

≤
1

3
θ(diam‖x − u‖+ diam‖y − v‖+ diam‖z − w‖)

and

diam(F(X1 × X2 × X3)) ≤
1

3
θ(diam(X1) + diam(X2) + diam(X3)).

Since θ is right continuous, similarly to the proof of Corollary 2.5, we have

µ(F(X1 × X2 × X3)) ≤
1

3
θ (µ(X1) + µ(X2) + µ(X3))

and since G is compact

µ(T(X1 × X2 × X3)) = µ((F + G)(X1 × X2 × X3))

≤ µ(F(X1 × X2 × X3) + G(X1 × X2 × X3))

≤ µ(F(X1 × X2 × X3)) + µ(G(X1 × X2 × X3))

≤
1

3
θ (µ(X1) + µ(X2) + µ(X3)) .

Now, by applying Theorem 2.4, we get the desired result.
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This completes the proof of the theorem.

3. Applications

In this section, we apply our results to prove the existence of solutions for a
system of functional integral equations of Volterra type.
Let BC(R+) be the Banach space of all bounded and continuous functions on R+

equipped with the standard norm

‖x‖
∞
= sup {|x(t)| : t ≥ 0} .

For any nonempty bounded subset X of BC(R+), x ∈ X, A > 0 and ε > 0, let

ωA(x, ε) = sup{|x(t)− x(u)| : t, u ∈ [0, A] , |t − u| ≤ ε}
ωA(X, ε) = sup

{

ωA(x, ε) : x ∈ X
}

,
ωA

0 (X) = limε→0 ωA(X, ε),
ω0(X) = limA→∞ ωA

0 (X),
X(t) = {x(t) : x ∈ X}

and

µ(X) =
1

2
(ω0(X) + lim sup

t→∞

diamX(t)). (3.1)

The function µ is a measure of noncompactness in the space BC(R+) (in the sense
of Definition 1.1) (cf. [10], [13]).

Theorem 3.1. Assume that the following conditions are satisfied:
(i) f : R+ × R × R × R × R −→ R is continuous and there exist nondecreasing
and upper semicontinuous strictly L-function θ such that

| f (t, x1, x2, x3, x4)− f (t, y1, y2, y3, y4)| ≤

1

2
(θ(|x1 − y1|+ |x2 − y2|+ |x3 − y3|)) + |x4 − y4|, (3.2)

(ii) M := sup{| f (t, 0, 0, 0, 0)| : t ∈ R+} < ∞.
(iii) g : R+ × R+ × R × R × R −→ R is continuous and there exists a positive
constant D such that

D = sup{
∣

∣

∣

∫ t

0
g(t, s, x(s), y(s), z(s))ds

∣

∣

∣
: t ∈ R+, x, y, z ∈ BC(R+)}. (3.3)

Moreover,

lim
t−→∞

∣

∣

∣

∫ t

0
[g(t, s, x(s), y(s), z(s)) − g(t, s, u(s), v(s), w(s))ds]

∣

∣

∣
= 0 (3.4)

uniformly with respect to x, y, z, u, v, w ∈ BC(R+).
(iv) There exists a positive solution r0 of the inequality

1

3
θ(3r) + M + D ≤ r.
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Then the system of functional integral equations










x(t) = f (t, x(t), y(t), z(t)) +
∫ t

0 g(t, s, x(s), y(s), z(s))ds

y(t) = f (t, y(t), x(t), z(t)) +
∫ t

0 g(t, s, y(s), x(s), z(s))ds

z(t) = f (t, z(t), y(t), x(t)) +
∫ t

0 g(t, s, z(s), y(s), x(s))ds

(3.5)

has at least one solution in the space BC(R+)× BC(R+)× BC(R+).
For x, y, z ∈ BC(R+), let

‖ (x, y, z) ‖BC(R+)3= ‖x‖
∞
+ ‖y‖

∞
+ ‖z‖

∞
.

We can easily prove that the solution of (3.5) in BC(R+)× BC(R+)× BC(R+) is
equivalent to the tripled fixed point of G.

The proof depends upon the following lemma.
Lemma 3.2. Assume that g satisfies the hypothesis (iii) of Theorem 3.1. Then
G : BC(R+)× BC(R+)× BC(R+) −→ BC(R+) defined by

G(x, y, z)(t) =
∫ t

0
g(t, s, x(s), y(s), z(s))ds (3.6)

is a compact and continuous operator.
Proof. First we show that G(x, y, z)(t) is continuous for any x, y, z ∈ BC(R+).
Let x, y, z ∈ BC(R+) and ε > 0. Take u, v, w ∈ BC(R+) with ‖ (x, y, z) −
(u, v, w) ‖BC(R+)3< ε. Then, by condition (ii) and (3.2), there exists T > 0 such
that for t > T, we have

| G(x, y, z)(t) − G(u, v, w)(t) |≤
∫ t

0
| g(t, s, x(s), y(s), z(s))ds − g(t, s, u(s), v(s), w(s))ds |≤ ε, (3.7)

for any x, y, z ∈ BC(R+). Also if t ∈ [0, T], then the first inequality in (3.7) implies
that

| G(x, y, z)(t) − G(u, v, w)(t) |≤ TϑT(ε),

where

ϑT(ε) = sup{| g(t, s, x.y.z)− g(t, s, u, v, w) |: t ∈ [0, T], x, y, z, u, v, w ∈ [−b, b],

‖ (x, y, z)− (u, v, w) ‖BC(R+)3< ε},

with b = ‖x‖
∞
+ ‖y‖

∞
+ ‖z‖

∞
+ ε. By using the continuity of g on [0, T]× [0, T]×

[−b, b] × [−b, b] × [−b, b], we have ϑT(ε) → 0 as ε → 0. Thus, G is a continuous
function on BC(R+)× BC(R+)× BC(R+). Now, let X1, X2, X3 be nonempty and
bounded subsets of BC(R+), and assume that T > 0 and ε > 0 are arbitrary con-
stants. Let t1, t2 ∈ [0, T] with | t1 − t2 |≤ ε and (x, y, z) ∈ X1 × X2 × X3. We have
| G(x, y, z)(t1)− G(x, y, z)(t2) |≤

|
∫ t1

0
g(t1, s, x(s), y(s), z(s))ds −

∫ t2

0
g(t2, s, x(s), y(s), z(s))ds |≤ TωT

r (g, ε) + UT
r ε

(3.8)
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where r = supx,y,z∈X{‖x‖
∞
+ ‖y‖

∞
+ ‖z‖

∞
},

ωT
r (g, ε) = sup{| g(t1, s, x, y, z)− g(t2, s, x, y, z) |:

t1, t2 ∈ [0, T], x, y, z ∈ [−r, r], | t1 − t2 |≤ ε},

UT
r = sup{| g(t, s, x, y, z) |: t ∈ [0, T], x, y, z ∈ [−r, r]}.

Since (x, y, z) was arbitrary, we obtain

ωT(G(X1 × X2 × X3), ε) ≤ TωT
r (g, ε) + UT

r ε. (3.9)

On the other hand, by the uniform continuity of g on [0, T] × [0, T] × [−r, r] ×
[−r, r] × [−r, r], we have ωT

r (g, ε) → 0 as ε → 0. Therefore we obtain
ωT

0 (G(X1 × X2 × X3)) = 0 and, finally

ω0(G(X1 × X2 × X3)) = 0. (3.10)

In addition, for arbitrary (x, y, z), (u, v, w) ∈ X1 × X2 × X3 and t ∈ R+, we have

| G(x, y, z)(t) − G(u, v, w)(t) |≤
∫ t

0
|

g(t, s, x(s), y(s), z(s))ds − g(t, s, u(s), v(s), w(s))ds |≤ β(t)

where

β(t) = sup{| g(t, s, x(s), y(s), z(s)) − g(t, s, u(s), v(s), w(s)) |:

t, s ∈ [0, T]; x, y, z, u, v, w ∈ BC(R+)}.

Thus, we have
diamG(X1 × X2 × X3)(t) ≤ β(t) (3.11).

Taking the limit as t → ∞ in the inequality (3.11) and using (iii) we get

lim sup
t→∞

diamG(X1 × X2 × X3)(t) = 0 (3.12).

Further, combining (3.10) and (3.12), we get

lim sup
t→∞

diamG(X1 × X2 × X3)(t) + ω0(G(X1 × X2 × X3)) = 0 (3.13).

or equivalently
µ(G(X1 × X2 × X3)) = 0.

Thus, G is compact and the proof is complete.
Proof of Theorem 3.1. We define the operators F, T : BC(R+)× BC(R+)× BC(R+) →
BC(R+)× BC(R+)× BC(R+) by

F(x, y, z)(t) = f (t, x(t), y(t), z(t))

and

T(x, y, z)(t) = f (t, x(t), y(t), z(t)) +
∫ t

0
g(t, s, x(s), y(s), z(s))ds.
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Using conditions (i)-(iv), for arbitrarily fixed t ∈ R+, we have

G(x, y, z)(t)

≤| f (t, x(t), y(t), z(t)) +
∫ t

0
g(t, s, x(s), y(s), z(s))ds − f (t, 0, 0, 0, 0) |

+ | f (t, 0, 0, 0, 0) |

≤
1

3
θ(| x(t) | + | y(t) | + | z(t) |)+ |

∫ t

0
g(t, s, x(s), y(s), z(s))ds | + | f (t, 0, 0, 0, 0) |

≤
1

3
θ(| x(t) | + | y(t) | + | z(t) |) + M + D

Since by assumption (ii) the function θ is nondecreasing, we get

‖ G(x, y, z) ‖≤
1

3
θ(‖x‖

∞
+ ‖y‖

∞
+ ‖z‖

∞
) + M + D.

Thus, keeping in mind assumption (iv) we infer that T is a self mapping of the
ball B̄r0 . Next, by condition (ii) of Theorem 3.1, it is obvious that F and G for
x, y, z ∈ BC(R+) are continuous functions, and

‖ F(x, y, z)− F(u, v, w) ‖< θ(‖ (x, y, z)− (u, v, w) ‖BC(R+)3).

Let µ : ME → R+ be the Kuratowski measure of noncompactness defined by
(1.1). Using Theorem 2.4, we get

µ(F(x)) ≤ θ(µ(x)). (3.14)

Thus, F is a Meir-Keeler condensing operator. Finally, since T(x, y, z) = F(x, y, z)+
G(x, y, z), G is a compact and continuous operator and F is a continuous Meir-
Keeler condensing operator, by Corollary 2.5, T has a fixed point.
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[10] J. Banaś, K. Goebel, Measures of Noncompactness in Banach Spaces, Lecture
Notes in Pure and Applied Mathematics, Vol. 60, Dekker, New York, 1980.
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[22] V. Istrăţescu, On a measure of noncompactness, Bull. Math. Soc. Sci. Math.
R.S. Roumanie (N.S), 16 (1972) 195–197.

[23] V. Karakaya, N. H. Bouzara, K. Dogan, Y. Atalan, Existence of tripled fixed
points for a class of condensing operators in Banach spaces, The Scientific
World Journal, Volume 2014 (2014), Article ID 541862, 9 pages.

[24] K. Kuratowski, Sur les espaces complets. Fund. Math.15 (1930) 301-309.

[25] T.C. Lim, On characterizations of Meir-Keeler contractive maps, Nonlinear
Anal. 46 (2001) 113-120.

[26] A. Meir, E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl.
28 (1969) 326-329.

[27] M. Mursaleen, A. Alotaibi, Infinite system of differential equations in some
BK spaces, Abstract Appl. Anal., Volume 2012 (2012), Article ID 863483, 20
pages, doi:10.1155/2012/863483.

[28] M. Mursaleen, S. A. Mohiuddine, Applications of measures of noncompact-
ness to the infinite system of differential equations in ℓp spaces, Nonlinear
Analysis (TMA), 75 (2012) 2111-2115.

[29] M. Mursaleen, Application of measure of noncompactness to infinite system
of differential equations, Canad. Math. Bull., 56 (2013) 388-394.

[30] M. Mursaleen, A. K. Noman, Hausdorff measure of noncompactness of cer-
tain matrix operators on the sequence spaces of generalized means, Jour.
Math. Anal. Appl., 417 (2014) 96-111.

Department of Mathematics, Faculty of Science,
King Abdulaziz University,
P.O. Box 80203, Jeddah 21589, Saudi Arabia
emails : mathker11@hotmail.com; mohiuddine@gmail.com

Department of Mathematics,
Aligarh Muslim University,
Aligarh 202002, India
Email: mursaleenm@gmail.com


