A new look at the proof of K-theoretic
amenability for groups acting on trees

Pierre Julg

Abstract

We generalize the construction by Pytlik and Szwarc of uniformly boun-
ded representations for free groups to groups acting on trees. We deduce
a new version of the proof (by Alain Valette and the author, 1983) of the
fact that locally compact groups acting on trees with amenable stabilizers are
amenable in K-theory.

To any locally compact group G are naturally associated two C*-algebras: the
tull C*-algebra C*G which contains the information on all unitary representations
of G, and the reduced C*algebra C;G which only takes into account the unitary
representations weakly contained in the regular representation in L?(G). There is
a surjective morphism A : C*G — C;G which is an isomorphism if and only if G
is amenable.

The K-theory functor, a covariant functor from C* algebras to abelian groups,
gives rise to a morphism A, of abelian groups . J. Cuntz [C] has proved that A.
is an isomorphism for some non amenable discrete groups such as free groups or
SL(2,Z). Such groups are said to be K-amenable. Strictly speaking, one requires
a slightly stronger property: the isomorphism in K theory must hold not only for
the group C*-algebras of G but for the crossed products associated to the action
of G by automorphisms on an auxiliary C*-algebra. In our 1983 paper [JV1],
A. Valette and myself gave a generalization of J. Cuntz’s result, proving K-amena-
bility of any locally compact group acting on a tree with amenable stabilizers. The
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most striking example was the (totally disconnected) group SL(2) over the field
of p-adic numbers. Details are given in [JV2].

The technical tool, both in Cuntz’s paper and in our work, is G. Kasparov’s
equivariant KK-bifunctor [K]. An important special case is the ring KKs(C, C)
associated to a locally compact group G. If G is compact, this is nothing else as
the representation ring R(G). In general, it is defined as the set of homotopy
classes of G-Fredholm modules. The existence of a product in a non trivial result
in [K].

The only thing we shall need here is the definition of a G-Fredholm module:
it is given by two unitary representations 7r; and 71, of G respectively on Hilbert
spaces H; and Hj, together with a bounded Fredholm operator T : Hy — H
such that Tty (g) — 712(g)T is compact for any ¢ € G and depends on g in a norm
continuous manner.

The proof of [JV2] combined two ingredients:

1) The construction of a very simple Fredholm module associated to the group
action on a tree. It defines a class <y in Kasparov’s ring KK (C, C).

2) The construction of a homotopy proving that v = 1 using the fact that the
distance kernel on the set of vertices of the tree is of conditionally negative type.
Or equivalently the existence of an affine action of G on the ¢2 space of edges of
the tree.

Note that the two ingredients are of a rather different nature. The first can
be generalized to other situations such as Bruhat-Tits buildings [JV3][KS1] or
(hyper)bolic spaces [KS2]. The second is very specific to trees or generalizations
(e.g. CAT(0) cubic complexes cf [BGH]).

I present here a perhaps more natural proof of the same result. It is inspired by
the nice construction by Pytlik and Szwarc [PS] of a family of uniformly bounded
representations of a free group, generalized by Valette [V1] and Szwarc [S1] to
groups acting on trees. I have had this new version for quite a long time in my
private notes. I thank Amaury Freslon and Jacek Brodzki for convincing me that
making these notes available could be useful to others. I thank Ryszard Szwarc
for pointing me reference [S1] and Jean-Pierre Schreiber for some comments and
corrections.

I dedicate this short paper to the memory of Tadeusz Pytlik, who died in 2006
[S2].

1 Notations

Let X = (XY, X!) be a tree. There is no orientation on X so that the set X! of edges
is just a subset of XY x X stable by the map (x,y) — (y,x). By hypothesis, for
any x and y in X? there is a unique path joining x to y. We denote by [x, y] the set
of vertices lying between x and y and d(x, y) the number of edges between x and

Y.

Let G be a group acting on X. In other words G acts on X? in such a way
that the subset X! C X° x XV is stable. For simplicity we consider a discrete
group G but the arguments can be easily generalized to the case of a locally
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compact group G, such as SL>(Qy), cf. [JV2]. We consider the Hilbert space
£2(X9), (8 ,x € X?) its canonical Hilbert basis and 7y the unitary representation
arising from the action of G on the set X° defined by 710(g)éx = J4x. Let £2(X1)~
be the quotient of /2(X!) by the subspace generated by the vectors O(xy) T O(y,%)
for (x,y) € X' and 7; the unitary representation of G on ¢?(X')~ defined by

71(8)0(xy) = I(grgy)
For x € X? let V(x) be the set of neighbours of x. Let the cardinality of V(x)

be denoted g, + 1. We assume for simplicity that g, is bounded. We define the
following bounded operators S and Q on ¢2(X?) by the following formulae:

SO, = Z (5y
yeV(x)
Qoy = Qxéx'

Note that the operators Q and S only depend on the tree structure on X and
therefore commute with the unitaries 779(g).

2 The Pytlik-Szwarc operator

We now choose an origin xp € X". Let py the orthogonal projection onto the
vector dy,. Let us define the operator P on ¢2(X") by

Pdy, =0
Péx — 53(/

where for x # xo we define x" to be the unique neighbour of x lying between x
and x.

Proposition 1. The operator P such defined is bounded on ¢%(X°) and satisfies:
PP* = Q-+ Po
P+P*=S

Proof: For x # xo, one has P*6x = Y, cy(x)\ {x} Oy 5O that clearly (P + P*)éx =
$6;.. Similarly (P + P*)dy, = P*8x, = Lyev(xy) Oy = SOx-

On the other hand, for x # xpand y € V(x) \ {x’} one has Pé, = 4, so that
PP*5y = qxbx, whereas for any y € V(xg), Pdy = dx, so that PP*0y; = (qx, + 1)dx,

Corollary 1. Let Ty = 1 —tP + ((1 — t2)1/2 —1)pq for any t € [0, 1] Then the operator
T; satisfies the following formula: Ty T} = 1 — tS + t*Q. In particular, the operator T, T}
commutes with the unitaries 7y(g), § € G.

Indeed we have T; = 1 — tP + apy where a satisfies a®> +2x + 1> = 0. A
straightforward calculation (using the obvious fact that Ppy = 0) yields
T;T; = 1—t(P + P*) +t?PP* + (2a + a?) pg and the result follows from the propo-
sition.
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3 Construction of new representations

Let us consider the space D(X") of finitely supported functions on X° as a dense
subspace of ¢2(X?). Clearly D(XV) is stable by the operators P, P* and 714(g) for
g€G.

Lemma 1. For any complex number z the operator
(1-zP)~ Z ZFp*

is defined on D(X?). One has

(1—2zP)~ Z 210 s

YyE[xo,x]

Proof. Let the elements of [x(, x] be denoted x¢, x1,..., X, = x, where n =
d(xg,x). Then pPks, = Jx, , for k < nand 0 for k > n. Note that d(x,_¢,x) = k.
This makes the statement straightforward.

Theorem 1. (Pytlik-Szwarc) Let z be a complex number such that |z| < 1. For any
¢ € G the operator p;(g) = (1 —zP) 17o(g)(1 — zP) extends to a bounded operator
on (2(XY), thus defining a representation p, of G in £(X"). The operator p,(g) — 1o(g)
is a finite rank operator and the representation p, is uniformly bounded, i.e.

sup [|pz(g)[] < oo.
geG

In order to construct unitary representations, we shall need to modify the op-
erators 1 — tP by the operators T; as in Corollary 1. Note that the inverse operator
T, ! is well defined on the space D(X?).

Theorem 2. For any real number such that 0 < t < 1 the operator p(g) = T; ' 70 (g) T
on D(X?) extends to a unitary operator on ¢?(X°), thus defining a unitary representation
0t of G in (2(X°). The operator pi(g) — 70(g) is a finite rank operator. The uniformly
bounded representation p; is equivalent to the unitary representation py.

Proof of theorems 1 and 2: Let us prove that p.(g) — 71o(g) has finite rank and
a norm bounded independently from g. It is enough to consider the operator

p=(g)mo(g) ™' —1=2(1—2zP)" (P~ P')

where P’ is defined just as P but replacing xo by gx¢. It is clear that the above
operator is supported on the finite dimensional subspace generated by the J,’s
for x € [xp,¢xp]. That subspace is indeed stable by P and P’ which have restric-
tions of norm 1. Therefore the norm of (1 — zP)~!(P — P’) is at most 2" |z|* =
2(1 — |z|)~!. This proves theorem 1.



A new look at the proof of K-theoretic amenability for groups acting on trees 267

To deduce theorem 2 note that g;(g) = u; 'p¢(g)ur where uy = (1 — po) +
(1—1t2)1/2py is an invertible operator which differs from the identity by a compact
operator. It remains to show that §;(g) is unitary. Since it is invertible it is enough

to compute §;(g)*:(g) = Trmo(g) L(TyTF)  'ro(g) T which is equal to 1 since
T: T} commutes to 71p(g) by the corollary to the proposition above.

Remark. The link with the original approach of [JV1][JV2] is given by an easy
computation: the kernel defining the (densely defined) operator (T;T;) ! is

< T8y, T 16y >= t1030) = o= MGy)

ift =e A,

4 The limit when ¢ tends to 1

Let us now calculate the limit of g;(g) when t — 1. Let us recall the definition of
the Julg-Valette map F : £2(X?) — ¢2(X!)~:

Féy, =0
F&x — 5(3{,3{/)
Wehave Fpyp =0, F*F =1 — ppand FF* = 1.

Lemma 2. Let b : (*(X')™ — £2(X°) be the coboundary operator defined by bd ;) =
0y — Ox. Then the operators F and P are related by the formulae:

1—-P=0bF+po
(1-P)F* =b

Indeed, (1 — P)dx = dx — 0y = DFdy if x # xp and (1 — P)dy, = Jx,- The
second formula follows from the first since (1 — P)F* = bFF* = b.

Remark. Let c(x,y) = Y 0(y, ,,,) if the elements of [x,y] are denoted xo = x,
x1,..., X» = Y. This is the cocycle realizing explicitly the Haagerup property for
groups acting properly on trees: |[c(x,y)||* = d(x,y). On has be(x,y) = 6, — 6%,
hence by the second formula above, ¢(x,y) = F(1 — P) (6, — dx).

Corollary 2. The operator (1 — P)~'b extends to a bounded operator and one has:
(1-P)'b=F*

It follows indeed from the lemma that (1 — P)F* = b.

Proposition 2. For any § € G the unitary operator p¢(g) (0 < t < 1) converges
strongly to

01(8) = F'ri(g)F + po
whent — 1.
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Proof: Let us first prove that Fp;(g)F* strongly converges to 7r1(g). One has
(as poF* = 0):

For(g)F* = FT; 'mo(g) T;F* = F(1 — tP) 'mo(g)(1 — tP)F*

which evaluated on functions with finite support on X! converges to
F(1 - P)~'my(g)(1 — P)F*, but this is equal to

F(1— P) rmo(g)bFF* = F(1 — P)"'bmy(g) = FF*mr1(g) = mi(g)

by two applications of Corollary 2.

We deduce that (1 — pg)p:(g)(1 — po) converges strongly to F*7r1(g)F.

On the other hand we check that p;(g)dx, — dx, when t — 1. We have indeed
Tibx, = (1 — 12)1/25,, so that (1 — tP) "17o(g) Tidy, = (1 — £2)1/2(1 — tP) 164y, =
(1-)12y td(y'gx())éy where the sum is extended to the vertices y of the segment
[0, gx0]. Finally T, ' 7t0(g) Tidx, = t*(F08%0)5, + (1 — 12)1/2 ¥ 4(0:8%0) 5, where xg
is now excluded from the sum. Hence the result.

As a consequence f;(g)po converges normally to po, and since p; is unitary,
replacing ¢ by ¢! we also have that pod¢(g) converges normally to py.

The proposition clearly follows.

5 Classes in KKg-theory

Let us consider the Hilbert space £2(X°) equipped with the two representations
p+ and 79, which differ by compact operators. The triple (¢, 77, [d) defines an
element of the Kasparov group KKg(C,C). It is independent of the value on
t € [0,1] since the operators g;(g) are strongly continuous in f. Now when t = 0
we have pp = 7 so that the element is equal to 0. On the other hand when t =1
we have p1(g) = F*m1(g)F + po so that the element is equal to 1 — v where v is
defined as in [JV1][JV2] by the triple (7o, 11, F).

Corollary 3. We have the equality v = 1 in the Kasparov group KKg(C, C).

Recall [JV2] that the above corollary implies the K-theoretic amenability of G
under the hypothesis that the vertices of the tree have amenable stabilisers.
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