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Abstract

We generalize the construction by Pytlik and Szwarc of uniformly boun-
ded representations for free groups to groups acting on trees. We deduce
a new version of the proof (by Alain Valette and the author, 1983) of the
fact that locally compact groups acting on trees with amenable stabilizers are
amenable in K-theory.

To any locally compact group G are naturally associated two C∗-algebras: the
full C∗-algebra C∗G which contains the information on all unitary representations
of G, and the reduced C∗algebra C∗

r G which only takes into account the unitary
representations weakly contained in the regular representation in L2(G). There is
a surjective morphism λ : C∗G → C∗

r G which is an isomorphism if and only if G
is amenable.

The K-theory functor, a covariant functor from C∗ algebras to abelian groups,
gives rise to a morphism λ∗ of abelian groups . J. Cuntz [C] has proved that λ∗

is an isomorphism for some non amenable discrete groups such as free groups or
SL(2, Z). Such groups are said to be K-amenable. Strictly speaking, one requires
a slightly stronger property: the isomorphism in K theory must hold not only for
the group C∗-algebras of G but for the crossed products associated to the action
of G by automorphisms on an auxiliary C∗-algebra. In our 1983 paper [JV1],
A. Valette and myself gave a generalization of J. Cuntz’s result, proving K-amena-
bility of any locally compact group acting on a tree with amenable stabilizers. The
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most striking example was the (totally disconnected) group SL(2) over the field
of p-adic numbers. Details are given in [JV2].

The technical tool, both in Cuntz’s paper and in our work, is G. Kasparov’s
equivariant KK-bifunctor [K]. An important special case is the ring KKG(C, C)
associated to a locally compact group G. If G is compact, this is nothing else as
the representation ring R(G). In general, it is defined as the set of homotopy
classes of G-Fredholm modules. The existence of a product in a non trivial result
in [K].

The only thing we shall need here is the definition of a G-Fredholm module:
it is given by two unitary representations π1 and π2 of G respectively on Hilbert
spaces H1 and H1, together with a bounded Fredholm operator T : H1 → H2

such that Tπ1(g)− π2(g)T is compact for any g ∈ G and depends on g in a norm
continuous manner.

The proof of [JV2] combined two ingredients:
1) The construction of a very simple Fredholm module associated to the group

action on a tree. It defines a class γ in Kasparov’s ring KKG(C, C).
2) The construction of a homotopy proving that γ = 1 using the fact that the

distance kernel on the set of vertices of the tree is of conditionally negative type.
Or equivalently the existence of an affine action of G on the ℓ2 space of edges of
the tree.

Note that the two ingredients are of a rather different nature. The first can
be generalized to other situations such as Bruhat-Tits buildings [JV3][KS1] or
(hyper)bolic spaces [KS2]. The second is very specific to trees or generalizations
(e.g. CAT(0) cubic complexes cf [BGH]).

I present here a perhaps more natural proof of the same result. It is inspired by
the nice construction by Pytlik and Szwarc [PS] of a family of uniformly bounded
representations of a free group, generalized by Valette [V1] and Szwarc [S1] to
groups acting on trees. I have had this new version for quite a long time in my
private notes. I thank Amaury Freslon and Jacek Brodzki for convincing me that
making these notes available could be useful to others. I thank Ryszard Szwarc
for pointing me reference [S1] and Jean-Pierre Schreiber for some comments and
corrections.

I dedicate this short paper to the memory of Tadeusz Pytlik, who died in 2006
[S2].

1 Notations

Let X = (X0, X1) be a tree. There is no orientation on X so that the set X1 of edges
is just a subset of X0 × X0 stable by the map (x, y) 7→ (y, x). By hypothesis, for
any x and y in X0 there is a unique path joining x to y. We denote by [x, y] the set
of vertices lying between x and y and d(x, y) the number of edges between x and
y.

Let G be a group acting on X. In other words G acts on X0 in such a way
that the subset X1 ⊂ X0 × X0 is stable. For simplicity we consider a discrete
group G but the arguments can be easily generalized to the case of a locally
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compact group G, such as SL2(Qp), cf. [JV2]. We consider the Hilbert space

ℓ2(X0), (δx , x ∈ X0) its canonical Hilbert basis and π0 the unitary representation
arising from the action of G on the set X0 defined by π0(g)δx = δgx. Let ℓ2(X1)−

be the quotient of ℓ2(X1) by the subspace generated by the vectors δ(x,y) + δ(y,x)

for (x, y) ∈ X1 and π1 the unitary representation of G on ℓ2(X1)− defined by
π1(g)δ(x,y) = δ(gx,gy)

For x ∈ X0 let V(x) be the set of neighbours of x. Let the cardinality of V(x)
be denoted qx + 1. We assume for simplicity that qx is bounded. We define the
following bounded operators S and Q on ℓ2(X0) by the following formulae:

Sδx = ∑
y∈V(x)

δy

Qδx = qxδx.

Note that the operators Q and S only depend on the tree structure on X and
therefore commute with the unitaries π0(g).

2 The Pytlik-Szwarc operator

We now choose an origin x0 ∈ X0. Let p0 the orthogonal projection onto the
vector δx0 . Let us define the operator P on ℓ2(X0) by

Pδx0 = 0

Pδx = δx′

where for x 6= x0 we define x′ to be the unique neighbour of x lying between x0

and x.

Proposition 1. The operator P such defined is bounded on ℓ2(X0) and satisfies:

PP∗ = Q + p0

P + P∗ = S

Proof: For x 6= x0, one has P∗δx = ∑y∈V(x)\{x′} δy so that clearly (P + P∗)δx =

Sδx. Similarly (P + P∗)δx0 = P∗δx0 = ∑y∈V(x0) δy = Sδx0 .

On the other hand, for x 6= x0 and y ∈ V(x) \ {x′} one has Pδy = δx so that
PP∗δx = qxδx, whereas for any y ∈ V(x0), Pδy = δx0 so that PP∗δx0 = (qx0 + 1)δx0

Corollary 1. Let Tt = 1− tP + ((1− t2)1/2 − 1)p0 for any t ∈ [0, 1] Then the operator
Tt satisfies the following formula: TtT

∗
t = 1− tS + t2Q. In particular, the operator TtT

∗
t

commutes with the unitaries π0(g), g ∈ G.

Indeed we have Tt = 1 − tP + αp0 where α satisfies α2 + 2α + t2 = 0. A
straightforward calculation (using the obvious fact that Pp0 = 0) yields
TtT

∗
t = 1− t(P+ P∗)+ t2PP∗+(2α+ α2)p0 and the result follows from the propo-

sition.
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3 Construction of new representations

Let us consider the space D(X0) of finitely supported functions on X0 as a dense
subspace of ℓ2(X0). Clearly D(X0) is stable by the operators P, P∗ and π0(g) for
g ∈ G.

Lemma 1. For any complex number z the operator

(1 − zP)−1 =
∞

∑
k=0

zkPk

is defined on D(X0). One has

(1 − zP)−1δx = ∑
y∈[x0,x]

zd(y,x)δy

Proof. Let the elements of [x0, x] be denoted x0, x1,..., xn = x, where n =
d(x0, x). Then Pkδx = δxn−k

for k ≤ n and 0 for k > n. Note that d(xn−k, x) = k.
This makes the statement straightforward.

Theorem 1. (Pytlik-Szwarc) Let z be a complex number such that |z| < 1. For any
g ∈ G the operator ρz(g) = (1 − zP)−1π0(g)(1 − zP) extends to a bounded operator
on ℓ2(X0), thus defining a representation ρz of G in ℓ2(X0). The operator ρz(g)−π0(g)
is a finite rank operator and the representation ρz is uniformly bounded, i.e.

sup
g∈G

‖ρz(g)‖ < ∞.

In order to construct unitary representations, we shall need to modify the op-
erators 1− tP by the operators Tt as in Corollary 1. Note that the inverse operator

T−1
t is well defined on the space D(X0).

Theorem 2. For any real number such that 0 < t < 1 the operator ρ̃t(g) = T−1
t π0(g)Tt

on D(X0) extends to a unitary operator on ℓ2(X0), thus defining a unitary representation
ρ̃t of G in ℓ2(X0). The operator ρ̃t(g) − π0(g) is a finite rank operator. The uniformly
bounded representation ρt is equivalent to the unitary representation ρ̃t.

Proof of theorems 1 and 2: Let us prove that ρz(g)− π0(g) has finite rank and
a norm bounded independently from g. It is enough to consider the operator

ρz(g)π0(g)
−1 − 1 = z(1 − zP)−1(P − P′)

where P′ is defined just as P but replacing x0 by gx0. It is clear that the above
operator is supported on the finite dimensional subspace generated by the δx’s
for x ∈ [x0, gx0]. That subspace is indeed stable by P and P′ which have restric-
tions of norm 1. Therefore the norm of (1 − zP)−1(P − P′) is at most 2 ∑ |z|k =
2(1 − |z|)−1. This proves theorem 1.
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To deduce theorem 2 note that ρ̃t(g) = u−1
t ρt(g)ut where ut = (1 − p0) +

(1− t2)1/2p0 is an invertible operator which differs from the identity by a compact
operator. It remains to show that ρ̃t(g) is unitary. Since it is invertible it is enough

to compute ρ̃t(g)∗ρ̃t(g) = T∗
t π0(g)

−1(TtT
∗
t )

−1π0(g)Tt which is equal to 1 since
TtT

∗
t commutes to π0(g) by the corollary to the proposition above.

Remark. The link with the original approach of [JV1][JV2] is given by an easy
computation: the kernel defining the (densely defined) operator (TtT

∗
t )

−1 is

< T−1
t δx, T−1

t δy >= td(x,y) = e−λd(x,y)

if t = e−λ.

4 The limit when t tends to 1

Let us now calculate the limit of ρ̃t(g) when t → 1. Let us recall the definition of
the Julg-Valette map F : ℓ2(X0) → ℓ2(X1)−:

Fδx0 = 0

Fδx = δ(x,x′)

We have Fp0 = 0, F∗F = 1 − p0 and FF∗ = 1.

Lemma 2. Let b : ℓ2(X1)− → ℓ2(X0) be the coboundary operator defined by bδ(x,y) =
δy − δx. Then the operators F and P are related by the formulae:

1 − P = bF + p0

(1 − P)F∗ = b

Indeed, (1 − P)δx = δx − δx′ = bFδx if x 6= x0 and (1 − P)δx0 = δx0 . The
second formula follows from the first since (1 − P)F∗ = bFF∗ = b.

Remark. Let c(x, y) = ∑ δ(xi,xi+1)
if the elements of [x, y] are denoted x0 = x,

x1,..., xn = y. This is the cocycle realizing explicitly the Haagerup property for
groups acting properly on trees: ‖c(x, y)‖2 = d(x, y). On has bc(x, y) = δy − δx,

hence by the second formula above, c(x, y) = F(1 − P)−1(δy − δx).

Corollary 2. The operator (1 − P)−1b extends to a bounded operator and one has:

(1 − P)−1b = F∗

It follows indeed from the lemma that (1 − P)F∗ = b.

Proposition 2. For any g ∈ G the unitary operator ρ̃t(g) (0 < t < 1) converges
strongly to

ρ̃1(g) = F∗π1(g)F + p0

when t → 1.
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Proof: Let us first prove that Fρ̃t(g)F
∗ strongly converges to π1(g). One has

(as p0F∗ = 0):

Fρ̃t(g)F
∗ = FT−1

t π0(g)TtF
∗ = F(1 − tP)−1π0(g)(1 − tP)F∗

which evaluated on functions with finite support on X1 converges to
F(1 − P)−1π0(g)(1 − P)F∗ , but this is equal to

F(1 − P)−1π0(g)bFF∗ = F(1 − P)−1bπ1(g) = FF∗π1(g) = π1(g)

by two applications of Corollary 2.
We deduce that (1 − p0)ρ̃t(g)(1 − p0) converges strongly to F∗π1(g)F.
On the other hand we check that ρ̃t(g)δx0 → δx0 when t → 1. We have indeed

Ttδx0 = (1 − t2)1/2δx0 so that (1 − tP)−1π0(g)Ttδx0 = (1 − t2)1/2(1 − tP)−1δgx0 =

(1 − t2)1/2 ∑ td(y,gx0)δy where the sum is extended to the vertices y of the segment

[x0, gx0]. Finally T−1
t π0(g)Ttδx0 = td(x0 ,gx0)δx0 + (1 − t2)1/2 ∑ td(y,gx0)δy where x0

is now excluded from the sum. Hence the result.
As a consequence ρ̃t(g)p0 converges normally to p0, and since ρ̃t is unitary,

replacing g by g−1 we also have that p0ρ̃t(g) converges normally to p0.
The proposition clearly follows.

5 Classes in KKG-theory

Let us consider the Hilbert space ℓ2(X0) equipped with the two representations
ρ̃t and π0, which differ by compact operators. The triple (ρ̃t, π0, Id) defines an
element of the Kasparov group KKG(C, C). It is independent of the value on
t ∈ [0, 1] since the operators ρ̃t(g) are strongly continuous in t. Now when t = 0
we have ρ̃0 = π0 so that the element is equal to 0. On the other hand when t = 1
we have ρ̃1(g) = F∗π1(g)F + p0 so that the element is equal to 1 − γ where γ is
defined as in [JV1][JV2] by the triple (π0, π1, F).

Corollary 3. We have the equality γ = 1 in the Kasparov group KKG(C, C).

Recall [JV2] that the above corollary implies the K-theoretic amenability of G
under the hypothesis that the vertices of the tree have amenable stabilisers.
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