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Abstract

Let M2n+1 be an almost Kenmotsu manifold with the characteristic vector
field belonging to the (k, µ)′-nullity distribution. We prove that the curvature
tensor of M2n+1 is harmonic if and only if M2n+1 is locally isometric to either
a product space H

n+1(−4)×R
n, or an Einstein warped product C × f N2n of

an open interval and a Ricci-flat almost Kähler manifold.

1 Introduction

A tensor field of type (1, 3) is called an algebraic curvature tensor field if it has
symmetric properties of the curvature tensor field of a Riemannian manifold
(M, g). It is well known [17] that an algebraic curvature tensor field R on a
Riemannian manifold (M, g) is said to be harmonic if

(divR)(X, Y, Z) = 0

for any vector fields X, Y, Z on M, where div denotes the divergence operator
with respect to the metric g. Following [16], an algebraic curvature tensor field
satisfying the second Bianchi identity is harmonic if and only if the associated
Ricci operator is of Codazzi type, that is,

(∇XQ)Y = (∇YQ)X
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for any vector fields X, Y on M. Obviously, by the above statements we see that
the curvature tensor of a Ricci symmetric Riemannian manifold (i.e., ∇Q = 0)
is harmonic. One important reason for the interest in studying the Riemannian
manifolds with harmonic curvature tensors lies in the fact that, the curvature
tensor of a Riemannian manifold (M, g) is harmonic if and only if the Riemannian
connection is a solution of the Yang-Mills equations on the tangent bundle of M
(see [2]).

On the other hand, the notion of k-nullity distribution was introduced by A.
Gray [12] and S. Tanno [22] in the study of Riemannian manifolds (M, g), which
is defined for any p ∈ M as follows:

Np(k) =
{

Z ∈ TpM : R(X, Y)Z = k[g(Y, Z)X − g(X, Z)Y]
}

, (1.1)

where X, Y denote arbitrary vectors in TpM and k ∈ R. Later, D. E. Blair, T.
Koufogiorgos and B. J. Papantoniou [6] introduced a generalized notion of the
k-nullity distribution which is called the (k, µ)-nullity distribution on contact met-
ric manifolds (M2n+1, φ, ξ, η, g) and is defined for any p ∈ M2n+1 as follows:

Np(k, µ) =
{

Z ∈ TpM : R(X, Y)Z =k[g(Y, Z)X − g(X, Z)Y]

+ µ[g(Y, Z)hX − g(X, Z)hY]
}

,
(1.2)

where h = 1
2Lξφ, L denotes the Lie differentiation and (k, µ) ∈ R

2. Recently,
G. Dileo and A. M. Pastore [11] introduced another generalized notion of the
k-nullity distribution named the (k, µ)′-nullity distribution on almost Kenmotsu
manifolds (M2n+1, φ, ξ, η, g), which is defined for any p ∈ M2n+1 as follows:

Np(k, µ)′ =
{

Z ∈ TpM : R(X, Y)Z =k[g(Y, Z)X − g(X, Z)Y]

+ µ[g(Y, Z)h′X − g(X, Z)h′Y]
}

,
(1.3)

where h = 1
2Lξφ, h′ = h ◦ φ, L denotes the Lie differentiation and (k, µ) ∈ R

2.
Almost Kenmotsu manifolds with ξ belonging to the k-nullity and the (k, µ)′-

nullity distribution were studied in [21] and [11, 23, 24, 25] respectively. Contact
metric manifolds with harmonic curvature tensor such that the characteristic vec-
tor field belongs to the k-nullity distribution were investigated by C. Baikoussis
and T. Koufogiougos in [2]. Generalizing the above result, K. Arslan, C. Mu-
rathan, C. Özgür and A. Yildiz [1] classified contact metric manifolds for which ξ
belongs to the (k, µ)-nullity distribution and the curvature tensors are harmonic.
We also refer the reader to B. J. Papantoniou [20] for some related results which
extended the corresponding result shown in [2]. Motivated by these results men-
tioned above, the object of this paper is to study almost Kenmotsu manifolds with
harmonic curvature tensors for which ξ belongs to the (k, µ)′-nullity distribution.
In fact, we mainly obtain the following classification theorem.

Theorem 1.1. Let (M2n+1, φ, ξ, η, g) be an almost Kenmotsu manifold of dimension
(2n + 1) such that the characteristic vector field ξ belongs to the (k, µ)′-nullity distri-
bution. Then the curvature tensor of M2n+1 is harmonic if and only if M2n+1 is locally
isometric to either a Riemannian product H

n+1(−4)× R
n or an Einstein warped prod-

uct C × f N2n, where C is an open interval with coordinate t, N2n is a Ricci-flat almost

Kähler manifold of dimension 2n and the warping function is given by f = cet for some
positive constant c.
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The present paper is organized as follows. In Section 2, we first recall some
well known basic formulas and properties of almost Kenmotsu manifolds. In
Section 3, after introducing some key lemmas on almost Kenmotsu manifolds
and some known properties on warped products, we finally present the detailed
proof of our main theorem and some corollaries.

2 Almost Kenmotsu manifolds

We shall first recall some basic notions and properties of almost Kenmotsu man-
ifolds. An almost contact structure (see Blair [5]) on a (2n + 1)-dimensional
smooth manifold M2n+1 is a triplet (φ, ξ, η), where φ is a (1, 1)-tensor field, ξ a
global vector field (which is called the characteristic vector field) and η a 1-form,
such that

φ2 = −id + η ⊗ ξ, η(ξ) = 1, (2.1)

where id denotes the identity mapping. It is obvious to see from relation (2.1)
that φ(ξ) = 0, η ◦ φ = 0 and rank(φ) = 2n. A Riemannian metric g on M2n+1 is
said to be compatible with the almost contact structure (φ, ξ, η) if it satisfies

g(φX, φY) = g(X, Y)− η(X)η(Y) (2.2)

for any vector fields X, Y on M2n+1. An almost contact structure endowed with
a compatible Riemannian metric is said to be an almost contact metric structure
(see Blair [5]). The fundamental 2-form Φ is defined by Φ(X, Y) = g(X, φY) for
any vector fields X and Y on M2n+1. An almost contact metric manifold such that
dη = 0 and dΦ = 2η ∧ Φ is called an almost Kenmotsu manifold. It is known [5]
that the normality of an almost contact structure is expressed by the vanishing of
the tensor Nφ = [φ, φ] + 2dη ⊗ ξ, where [φ, φ] is the Nijenhuis tensor of φ. The
normality of an almost Kenmotsu manifold is expressed by

(∇Xφ)Y = g(φX, Y)ξ − η(Y)φX

for any vector fields X, Y. From Janssens and Vanhecke [13], a normal almost
Kenmotsu manifold is said to be a Kenmotsu manifold.

We put l = R(· , ξ)ξ and h = 1
2Lξφ on an almost Kenmotsu manifold

(M2n+1, φ, ξ, η, g), where R is the curvature tensor of M2n+1 and L denotes the
Lie differentiation. Thus, the two (1, 1)-type tensor fields l and h are symmetric
and satisfy

hξ = 0, lξ = 0, trh = 0, tr(hφ) = 0, hφ + φh = 0. (2.3)

We also have the following formulas presented in [10, 11, 21]:

∇Xξ = −φ2X − φhX, (2.4)

φlφ − l = 2(h2 − φ2), (2.5)

tr(l) = S(ξ, ξ) = g(Qξ, ξ) = −2n − trh2, (2.6)

R(X, Y)ξ = η(X)(Y − φhY)− η(Y)(X − φhX) + (∇Yφh)X − (∇Xφh)Y, (2.7)
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for any X, Y ∈ Γ(TM), where S, Q, ∇ and Γ(TM) denote the Ricci tensor, the
Ricci operator with respect to the metric g, the Levi-Civita connection of g and
the Lie algebra of all vector fields on M2n+1, respectively.

Finally, we recall that an almost contact metric manifold is said to be η-Einstein
if the Ricci operator is given by

Q = α id + βη ⊗ ξ, (2.8)

where α and β are both smooth functions on M2n+1.

3 Harmonic curvature tensors

We assume that (M2n+1, φ, ξ, η, g) is an almost Kenmotsu manifold for which ξ
belongs to the (k, µ)′-nullity distribution, then from (1.3) we have

R(X, Y)ξ = k[η(Y)X − η(X)Y] + µ[η(Y)h′X − η(X)h′Y], (3.1)

where (k, µ) ∈ R
2. Throughout the paper, we shall denote by D the distribution

defined by D = ker(η) = Im(φ). Replacing Y by ξ in relation (3.1) we obtain that
lX = k(X − η(X)ξ) + µh′X, thus, making use of (2.1) and (2.3) in this equation
we get

φlφX = −k(X − η(X)ξ) + µh′X

for any vector field X on M2n+1. Substituting the above equation into (2.5) we
have

h′2 = (k + 1)φ2 (⇔ h2 = (k + 1)φ2). (3.2)

Letting X ∈ D be the eigenvector field of h′ corresponding to the eigenvalue
λ, thus from (3.2) it is easy to see that λ2 = −(k + 1) is a constant. It follows

from relation (3.2) that k ≤ −1 and λ = ±
√
−k − 1. Clearly, h′ 6= 0 if and only

if k < −1. In case of k < −1, we denote the eigenspaces corresponding to the
eigenvalues λ and −λ of h′ on D by [λ]′ and [−λ]′ respectively, where λ 6= 0.

Lemma 3.1 (Proposition 4.2 of [11]). Let (M2n+1, φ, ξ, η, g) be an almost Kenmotsu
manifold with ξ belonging to the (k, µ)′-nullity distribution. If h′ 6= 0, then for any
Xλ, Yλ, Zλ ∈ [λ]′ and X−λ, Y−λ, Z−λ ∈ [−λ]′, the curvature tensor satisfies :

R(Xλ , Yλ)Z−λ = 0, (3.3)

R(X−λ, Y−λ)Zλ = 0, (3.4)

R(Xλ , Y−λ)Zλ = (k + 2)g(Xλ, Zλ)Y−λ, (3.5)

R(Xλ , Y−λ)Z−λ = −(k + 2)g(Y−λ, Z−λ)Xλ, (3.6)

R(Xλ, Yλ)Zλ = (k − 2λ)[g(Yλ , Zλ)Xλ − g(Xλ, Zλ)Yλ], (3.7)

R(X−λ , Y−λ)Z−λ = (k + 2λ)[g(Y−λ , Z−λ)X−λ − g(X−λ, Z−λ)Y−λ] (3.8)

and µ = −2.

Making use of the curvature properties shown by Lemma 3.1, the present
authors obtained the following result by a straightforward computation.
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Lemma 3.2 (Lemma 3.2 of [23]). Let (M2n+1, φ, ξ, η, g) be an almost Kenmotsu mani-
fold with ξ belonging to the (k, µ)′-nullity distribution. If h′ 6= 0, then the Ricci operator
Q of M2n+1 is given by

Q = −2nid + 2n(k + 1)η ⊗ ξ − 2nh′ (3.9)

Moreover, the scalar curvature of M2n+1 is 2n(k − 2n).

Next, by using the Ricci operator shown by the above lemma, we obtain the
following result to prove our main theorem.

Lemma 3.3. Let (M2n+1, φ, ξ, η, g) be an almost Kenmotsu manifold with ξ belonging
to the (k, µ)′-nullity distribution. If h′ 6= 0, then

(∇Xh′)Y = (∇Yh′)X; (3.10)

(∇ξ Q)X = −2n(∇ξ h′)X; (3.11)

(∇XQ)ξ = 2n
(

(k + 1)X + (k + 2)h′X + h′2X
)

(3.12)

for any vector fields X, Y on the distribution D.

Proof. Letting X, Y ∈ D in (3.1) yields that R(X, Y)ξ = 0. Thus, relation (3.10)
follows from (2.7) for any X, Y ∈ D. Making use of (2.4) and taking the covariant
differentiation of (3.9) along arbitrary vector field Y ∈ Γ(TM), we obtain

(∇YQ)X + 2n(∇Yh′)X

=2n(k + 1)[η(X)Y − 2η(X)η(Y)ξ + η(X)h′Y + g(X, Y)ξ + g(h′X, Y)ξ]
(3.13)

for any X, Y ∈ Γ(TM). Next, letting Y ∈ D and X = ξ in (3.13) and making use
of (2.4), we obtain relation (3.12). Similarly, letting Y = ξ and X ∈ D in (3.13)
we get (3.11).

The following key lemma is also useful in the proof of our main theorem.

Lemma 3.4 (Lemma 4 of [7]). Let C be an interval of R, considered with its standard
metric, f : C → R a non-constant positive C∞-function and N an 2n-dimensional
Riemannian manifold, n ≥ 1, Then the following conditions are equivalent:

(1) C × f N has harmonic Riemannian curvature tensor;

(2) N is an Einstein manifold and the positive function ϕ = f
2n+1

4 : C → R satisfies
the following ordinary differential equation

ϕ′′ − (2n + 1)r

8n
ϕ

2n−3
2n+1 = pϕ (3.14)

for some real number p, r being the constant scalar curvature of N.

Finally, we may present the detailed proof of Theorem 1.1 as follows.

Proof of Theorem 1.1. Suppose that (M2n+1, φ, ξ, η, g) is an almost Kenmotsu
manifold with ξ belonging to the (k, µ)′-nullity distribution. By Dileo and Pastore
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[11], it follows that k ≤ −1. Therefore we may separate our discussions into two
case as follows.

Case 1: k < −1. By Proposition 4.1 of [11], the assumption k < −1 is equivalent
to h′ 6= 0, then Lemma 3.1, 3.2 and 3.3 are applicable in this context. Letting
X, Y ∈ D in relation (3.13) and making use of (3.10) we have that (∇XQ)Y =
(∇YQ)X for any X, Y ∈ D. By a direct calculation we may see that the curvature
tensor of M2n+1 is harmonic if and only if (∇XQ)ξ = (∇ξ Q)X for any X ∈ D.
Therefore, in view of equations (3.11) and (3.12) we know that the curvature
tensor R is harmonic if and only if

(∇ξh′)X + (k + 1)X + (k + 2)h′X + h′2X = 0 (3.15)

for any X ∈ D. Next, letting X ∈ [λ]′ in (3.15) and taking the inner product with
X on both sides of (3.15) we obtain

λ(k + 2) = 0, (3.16)

where we have used the identity g((∇ξ h′)X, X) = ξ(λ)g(X, X) = 0 (noticing
that λ is a constant). In view of h′ 6= 0, we know that λ is non-vanishing and
hence it follows from (3.16) that k = −2 and hence λ = ±1. The following proof
is similar to that of the corresponding results in [11, 24, 25]. Without losing the
generality we now choose λ = 1, then relations (3.7) and (3.8) can be re-written
respectively as follows:

R(Xλ , Yλ)Zλ = −4[g(Yλ, Zλ)Xλ − g(Xλ, Zλ)Yλ]

and
R(X−λ, Y−λ)Z−λ = 0

for any Xλ, Yλ, Zλ ∈ [λ]′ and X−λ, Y−λ, Z−λ ∈ [−λ]′. On the other hand, noticing
that µ = −2 then it follows from (3.1) that K(X, ξ) = −4 for any X ∈ [λ]′ and
K(X, ξ) = 0 for any X ∈ [−λ]′. As shown in [11], the distribution [ξ] ⊕ [λ]′ is
integrable with totally geodesic leaves immersed in M2n+1, and the distribution
[−λ]′ is integrable with totally umbilical leaves immersed in M2n+1 whose mean
curvature vector field is given by H = −(1 − λ)ξ. Taking into account λ = 1, we
know that both the two orthogonal distribution [ξ]⊕ [λ]′ and [−λ] are integrable
with totally geodesic leaves immersed in M2n+1. Therefore, M2n+1 is locally
isometric to a Riemannian product of an (n + 1)-dimensional manifold of con-
stant sectional curvature −4 and a flat n-dimensional manifold.

Conversely, if M2n+1 is locally isometric to the product H
n+1(−4) × R

n, we
observe from Proposition 4.2 of [3] or Remark 4.1 of [11] that such a product is
locally symmetric, i.e., ∇R = 0, this implies that the Ricci tensor is symmetric
(i.e., ∇S = 0) and hence the Riemannian curvature tensor is harmonic.

Case 2: k = −1. Suppose that (M2n+1, φ, ξ, η, g) is an almost Kenmotsu mani-
fold with the characteristic vector field ξ belonging to the (k, µ)′-nullity distribu-
tion. From [11, 21], it follows that the following three conditions are equivalent:
(i) h = 0; (ii) k = −1; (iii) the Reeb foliation of M2n+1 is conformal. By Theorem
2 of [10], the vanishing of h implies that M2n+1 is locally isometric to a warped
product C × f N2n, where C is an open interval with coordinate t, N2n is an almost
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Kähler manifold of dimension 2n and the warping function is given by f = cet

for some positive constant c.
Since M2n+1 has harmonic curvature tensor, by applying Lemma 3.4 we see

that N2n is an Einstein manifold. Thus, we may assume SN = γgN for certain
smooth function γ on N2n, where SN denotes the Ricci tensor of N2n with respect
to the Riemannian metric gN of N2n. In particular, making use of f = cet in (3.14)
yields that r = 0 and hence the Ricci tensor of N2n vanishes, this means that N2n

is a Ricci-flat almost Kähler manifold.
We also observe from the third term of Corollary 43 of [19] that the Ricci tensor

of the Riemanian warped product (C × f N2n, g) is given as follows:

S(V, W) = SN(V, W)− g(V, W) f ♯ (3.17)

for any vector fields V, W on the Riemannian fiber (N2n, gN), where S and SN

denote the Ricci tensors of Riemannian manifolds (C × f N2n, g) and (N2n, gN)
respectively, and

f ♯ =
∆ f

f
+ (dim(N2n)− 1)

〈grad f , grad f 〉
f 2

.

Making use of f = cet in the above equation we obtain f ♯ = 2n. Putting
this relation into (3.17) and noticing that the Ricci tensor of N2n vanishes, we
obtain S(V, W) = −2ng(V, W) for any vector fields V, W on N2n. Using h = 0 in
(2.7) we have R(X, Y)ξ = −η(Y)X + η(X)Y for any vector fields X, Y on M2n+1,
hence, by a direct calculation we get S(ξ, ξ) = −2ng(ξ, ξ) = −2n. Moreover, we
obtain from the second term of Corollary 43 of [19] that S(ξ, V) = S(V, ξ) = 0
for any vector fields V on N2n. Therefore, by the above arguments we know
that the warped product C × f N2n is an Einstein manifold with the Ricci operator
Q = −2nid. It is easy to check that the converse is also true. This completes the
proof.

Some results concerning Einstein warped products were shown in [15] and
[18]. Notice that in our case the Einstein warped product C× f N2n is noncompact.
In fact, making use of h = 0 (⇔ k = −1) in (2.4) we obtain that the divergence of
ξ is given by divξ = 2n.

Corollary 3.1. The curvature tensor of an almost Kenmotsu manifold with conformal
foliation is harmonic if and only if the manifold is Einstein.

By Proposition 2 of [10], we see that an almost Kenmotsu manifolds is Ken-
motsu if and only if the integral manifolds of the distribution D are Kählerian
and the tensor field h vanishes. Therefore, Corollary 3.1 follows from Case 2 of
Theorem 1.1 and can be regarded as a generalization of Theorem 2 of [4].

Let M2n+1 be an η-Einstein almost Kenmotsu manifold (i.e., Q = αid+ βη ⊗ ξ)
with conformal Reeb foliation and β a constant, A. M. Pastore and V. Saltarelli in
[21] proved that M2n+1 is an Einstein manifold with the Ricci operator
Q = −2nid.

Corollary 3.2. Let (M2n+1, φ, ξ, η, g) be an almost Kenmotsu manifold such that the
characteristic vector field ξ belongs to the (k, µ)′-nullity distribution with k < −1. Then
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the curvature tensor of M2n+1 is harmonic if and only if M2n+1 is locally isometric to
H

n+1(−4)× R
n.

The above corollary follows directly from Case 1 of Theorem 1.1. It is well
known that local symmetry condition implies Ricci symmetry, therefore, Corol-
lary 3.2 extends one conclusion of Proposition 4.1 of [11]. It is also known that the
Ricci symmetry condition implies that the curvature tensor is harmonic, hence
Corollary 3.1 is also a generalization of Corollary 4.3 of [24].

It is well known that the Weyl conformal curvature tensor C is defined on a
Riemanian manifold (M, g) of dimension m > 3 as follows:

C(X, Y)Z

=R(X, Y)Z +
r

(m − 1)(m − 2)
{g(Y, Z)X − g(X, Z)Y}

− 1

m − 2
{S(Y, Z)X − S(X, Z)Y + g(Y, Z)QX − g(X, Z)QY}

(3.18)

for any vector fields X, Y, Z on M, where r denotes the scalar curvature of M. No-
tice that the Weyl conformal curvature tensor C is said to be harmonic if divC = 0.
For a Riemanian manifold M of dimension m > 3, a straightforward calculation
gives that the Weyl curvature tensor is harmonic if and only if

(∇XS)(Y, Z) − (∇YS)(X, Z) =
1

2(m − 1)
{X(r)g(Y, Z) − Y(r)g(X, Z)} (3.19)

for any vector fields X, Y, Z on M. Assume that M2n+1 is an almost Kenmotsu
manifold with the characteristic vector field ξ belonging to the (k, µ)′-nullity dis-
tribution and k < −1, by Lemma 3.2 we see that the scalar curvature of M2n+1 is
a constant. Consequently, the following result directly follows from Theorem 1.1
and relation (3.19).

Corollary 3.3. Let (M2n+1, φ, ξ, η, g) be an almost Kenmotsu manifold of dimension
> 3 such that the characteristic vector field ξ belongs to the (k, µ)′-nullity distribution
and k < −1. Then the Weyl conformal curvature tensor of M2n+1 is harmonic if and
only if M2n+1 is locally isometric to H

n+1(−4)× R
n.
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