Classification of Lorentz surfaces with parallel
mean curvature vector in non-flat
pseudo-Riemannian space forms S3(1) and
H(~1)
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Abstract

Lorentz surfaces with parallel mean curvature vector in [E3 have been
classified in [14]. In this paper, we continue to classify Lorentz surfaces with
parallel mean curvature vector in pseudo-Riemannian space forms S5(1) and
H3(—1). Consequently, we achieve the complete classification of Lorentz
surfaces with parallel mean curvature vector in 4-dimensional neutral indef-
inite space form with index 2.

1 Introduction

Let [E}" denote the pseudo-Euclidean m-space equipped with pseudo-Euclidean
metric of index t given by

t n
2 2
i=1 j=t+1
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where (x1, ..., x,) is the rectangular coordinate system of E}*. Put
SK(co, %) = {x € BN (x —co,x —co) =1/1% > O} , (1.1)

H¥(co, —1%) = {x € ]E]S‘j:ﬂ(x —co,x—cg) = —1/1* < 0} , (1.2)

where (,) is the associated inner product and ¢y is a fixed point. Then S¥(c, )
and H¥(cy, —7?) are complete semi-Riemannian manifolds with index s of con-
stant curvature 2 and —12, respectively. We denote S¥(co, 7?) and H¥(co, —7?) by
SK(r?) and HX(—r?) when cy is the origin. In general relativity, the Lorentz mani-
folds IEX, S¥(r?) and H¥(—7?) are known as the Minkowski, de Sitter and anti-de
Sitter space, respectively.

It is well known that submanifolds with parallel mean curvature vector play
important roles in differential geometry, theory of harmonic maps as well as in
physics. Surfaces with parallel mean curvature vector in Euclidean space were
classified in the early 1970s by Chen and Yau[10]. Further, spacelike surfaces
with parallel mean curvature vector in arbitrary indefinite space forms were com-
pletely classified (see [8, 11, 12, 13]). However, the study of the classification of
Lorentz surfaces is less relative to the spacelike surfaces. In [14], we firstly clas-
sified Lorentz surfaces with parallel mean curvature vector in [E3. Soon after,
Lorentz surfaces with parallel mean curvature vector in pseudo-Euclidean spaces
with arbitrary codimension and index were classified in [15] and [16], indepen-
dently. (For an up-to-date survey on submanifolds with parallel mean curvature
vector, see [17]). Hence it is an interesting problem to classify all Lorentz surfaces
with parallel mean curvature vector in non-flat pseudo-Riemannian space forms.

In this paper, we achieve the classification of Lorentz surfaces with parallel
mean curvature vector in 4-dimensional pseudo-Riemannian space forms S3(1)
and Hj(—1). Our results state that there exist 19 families of Lorentz surfaces in
S3(1) and H3(—1), respectively.

2 Preliminaries

2.1 Basic formulas

Let R3(c) denote an 4-dimensional pseudo-Riemannian space form with index 2
of constant curvature ¢. Then the curvature tensor R of R3(c) is given by

R(X,Y)Z = c{(Y,Z)X — (X, Z)Y}.

Let M be a Lorentz surface in Ri(c). Denote by V and V the Levi Civita
connections of M and R3(c), respectively. For vector fields X and Y tangent to M
and vector field { normal to M, the formulas of Gauss and Weingarten are given

by (cf. [10, 18, 19])
VxY =VxY +h(X,Y), (2.1)

Vx¢ = —A:X + DxY, (2.2)
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where /1, A and D are the second fundamental form, the shape operator and the
normal connection, respectively. It is well known that  and A are related by

(h(X,Y),&) = (A:X,Y). (2.3)

We define the mean curvature H = %trace h. The equation of Gauss and Codazzi
are given respectively by

(RIX,YV)Z,W) = (Y, Z)(X, W) — (X, Z)(Y, W)}
+ (h(Y,2),h(X,W)) — (h(X, Z),h(Y,W)),
(Vxm)(Y,2) = (Vyh)(X,2),

N

where R is the curvature tensor of M and V# is defined by
(Vxh)(Y,Z) = Dxh(Y,Z) —h(VxY,Z) —h(Y,VxZ). (2.4)
We denote RP the curvature tensor associated with the normal connection D, i.e.,
RP(X,Y) = DxDy — DyDx — Dix y|,

then for vector fields X and Y tangent to M and vector field ¢, 7 normal to M, the
Ricci equation is given by

(RP(X,Y)E, 1) = ([Ag, Ay]X, Y).

2.2 Basic definitions

A surface in a pseudo-Riemannian 3-manifold (or a light cone) is called CMC if
its mean curvature vector H satisfies (H, H) = constant # 0.

A vector v is called spacelike (timelike) if (v,v) > 0 ({(v,v) < 0). A nonzero
vector v is called lightlike if (v,v) = 0. A curve z : I — E}" defined on an open
interval I C R is called null if its velocity vector z’(x) is lightlike for each x € I.

A surface in a semi-Riemannian manifold is called marginally trapped it its
mean curvature vector is lightlike. Recently, marginally trapped surfaces have
been studied from a mathematical viewpoint, such asin[1, 2,3,4,5,6,7, 8, 9].

2.3 Light cones

The light cone £C?~!(cq) with vertex cg in [E? is defined by
LC" Y (co) = {x € E": (x —co,x —cy) = 0}.

We simply denote the light cone £C!~1(0) by LC if there is no confusion possible.
The light cone £C?~! can be naturally embedded in S”(1) via

L LCTV CEY - SM(1) Cc BT iy e (y,1) € EFTL
The light cone £C?~! can be naturally embedded in H"(—1) via

1 LCITN C BN = HY(—1) CEM iy = (Ly) € B
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2.4 Moving frames.

We assume that M is a Lorentz surface in R3(c), {e1,e2} is a local tangent frame
and {e3, e4} is a local normal frame, which satisfy

(e1,e1) = (e2,e2) =0, (e, e2) = —1, (2.5)

<€3,€3> = <€4,€4> = O, <€3, €4> = —1. (26)
If we let

Vxer = w}(X)el + w%(X)ez, Ve, = w;_(X)el + w%(X)ez,

then from (2.5) we obtain that w% = w% = 0 and w} = —w%. If we put w = w%,

then
Vxer = w(X)e1, Vxer =—w(X)er. (2.7)
We put w(e1) = wi and w(ey) = ws. Similarly, for some one-form ¢, we have

Dxes = ¢(X)es, Dxes = —¢(X)eu. (2.8)

2.5 Some lemmas

We introduce some results for later use.

Lemma 2.1. [20]. There exist local coordinates (x,y) on M3 such that the metric of
the surface is given by ¢ = —m?(x,y)(dx ® dy + dy ® dx) for some positive function
m(x,y). The Levi-Civita connection of the surface is then given by

2my 2m

Vo 0r == 20y, V,0y =0, Vo,dy = Wyay, (2.9)

and its Gaussian curvature is K = 2(mmy, — mymy)/m*.

Similar to the Lemma 2.2 of [14], we establish the following lemma.

Lemma 2.2. Let M be a Lorentz surface in R3(c) with parallel mean curvature vector,
then (1) ¢ = 0, which implies RP = 0; (2) (H, H) is constant.

3 Lorentz surfaces in S3(1)

Let K, = {(x1,x2,-,x5) € ]Eg : x5 = x1 +a}. For any two vectors a =
(a1,...,a5), b = (by,...,bs) inE3, we putaxb = (a1by,...,asbs). The follow-
ing theorem classifies Lorentz surfaces with parallel mean curvature vector in
S3(1).
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Theorem 3.1. Let M be a Lorentz surface with parallel mean curvature vector in de Sitter
space-time S3(1) C I3, then L is congruent to a surface of the following 19 families.

1.
2.

10.

A minimal Lorentz surface of S5(1);

A Lorentz surface of curvature one with constant lightlike mean curvature vector,
lying in Ko N S3(1), which is defined by

L) = (fx),

for some function f(x,y).

xy—1 xy+1 y—x
x+y' x+y’ x+y

ﬂ%ﬁ),

. A Lorentz surface of curvature one defined by L = —plx) q(x), where p(x) is

x+y
a curve lying in the light cone LC and q(x) is a null curve satisfying (p’,q') =

0,(p.q")=-2,(p.p) =4

A Lorentz marginally trapped surface of curvature one in S3(1) and lies in
LC3 ={(y,1) € E3: (y,y) =0,y € B3} C S3(1), which is defined by

1
Lxy) =0y

where co = (0,0,0,0,1), u”(x) + c1(x)u(x) = 0" (x) + c1(x)v(x) = 2" (y) +

ay)zly) = w'(y) + ay)wly) = 0and (W'(x) «z(y) + v'(x) * w(y),
u(x) 2/ (y) + v(x) xw'(y)) = —2 for some functions c1(x) and ca(y).

(u(x) x 2(y) +o(x) xw(y)) + co,

a non-flat Lorentz surface which lies in S5(co, *) N S3(1) such that the mean cur-
vature vector H' of M in S5(co,r?) N S5(1) satisfies (H', H') =1 — 12,

. a non-flat Lorentz surface which lies in Hi(co, —r*) N S5(1) such that the mean

curvature vector H' of M in H{(co, —r*) N S5(1) satisfies (H', H') = 1+ r%.

A flat marginally trapped surface defined by

1 1
L= (u, u? + E,uz +1, 2 sin 20, cost) .

. A non-flat CMC surface lying in S5(co, r*) N S5(1) such that the mean curvature

vector H' of M in S3(co, %) N S3(1) satisfies (H', H') = 1 — r? — 2a for a nonzero
real number a.

. anon-flat CMC surface lying in Hy (co, —r*) N S5 (1) such that the mean curvature

vector H' of M in Hi(co, —1*) N S3(1) satisfies (H',H') = 1+1* —2a for a
nonzero real number a.

A flat surface defined by

I — cos/mu sin/mu cos+/nv sin\/nv n /1+i_i
Vam T 2m T V2 T V2 2m  2n )’
where m = a(2a +3) and n = 2a> —5a +4 fora € (—oo,—3) U (0,3) U
(3, +00).
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12.

13.

14.

15.

1e.

17.

18.
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. A flat surface defined by
[ <i MZ+E u2+ 15 cos2v sin20>
\/E/ 8 ’ ’ 2\/— 2\/§ .
A flat surface defined by
u 29 2 33 cos4v sin4v
L=|— "+, ¥+ =, ——, ——
ﬁ 16’ 16" 42" 42
A flat surface defined by

FYE- Y 1/ ’ ’ ’
2n  2m v —2m vV —2m V2n \V2n

where m = a(2a + 3) and n = 2a* —5a + 4 fora € (—3,0).

[ (i 1 1 sinh/—mu cosh/—mu cos+/nv sinﬁv)

A non-flat CMC surface lying in S5 N 7t, where 7t is hyperplane of index 2 in E3.

A non-flat CMC surface lying in S5 N 7, where 1t is hyperplane of index 1 in E3.

A non-flat surface defined by

L(x,y) = — u(y) +o(y),

X+y

where u(y) is a curve lying in the light cone L‘C and v(y) is a null curve satisfying
W, vy =0, W ) =5 (u,v') = 52+ for a real number a < 1/2.

A non-flat CMC surface lying in LC3 = {(y,1) € E3 : (y,y) =0,y € E3} C
S3(1) defined by

1

L(x,y) = x+y(u(X) +2(y) +v(x) xw(y)) + co,
where u,v,z, w are curves in E3 satzsfymg w(x) + c(x)u(x) = o"(x) +
e (x)o(x) =2"(y) + a(y)z(y) = w'(y) +ea(y)wly) = 0,and {u'(x) xz(y) +
0 () w10(y), 4(¥) #2/(9) 4+ 0(6) ! (1)) = ooy fo fmctions ey (x), ca(y) and

for a real number a < 1/2.

A non-flat surface defined by

L(x,y) = u(y) +o(y),

x—y

where u(y) is a curve lying in the light cone EC and v(y) is a null curve satisfying
W, o) =0, W )= (u,v') = 52+ for a real number a > 1/2.
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19. A non-flat CMC surface lying in £C3 = {(y,1) € E5: (y,y) =0,y € E5} C
S3(1) defined by
1
x—y
where co = (0,0,0,0,1), u,v,z, w are curves in E; satzsfymgu "(x) + cp(x)u(x)

= 0" (x) +c1(x)o(x) = 2"(y) + aa(y)z(y) = w'(y) + cay)w(y) = 0, and
{1(x) * 2(y) + 0/ () % w(y), u(x) 2 (1) +0(x) # 0 (1)) = — @y for fune-

tions c1(x), co(y) and for a real number a > 1/2.

L(x,y) = ——(u(x) * 2(y) + 0(x) * w(y)) + co,

Remark 3.2. Case (2) — (7) are marginally trapped Lorentz surfaces with parallel
mean curvature vector in S5(1) C E3.

Proof. Since M is a Lorentz surface in S5(1) with parallel mean curvature vector,
then (H, H) is constant and H = 0, or H is lightlike, or (H, H) is a nonzero
constant.

If H = 0, we get case (1).

If H is lightlike, then M is a marginally trapped Lorentz surface in S5(1) with
parallel mean curvature vector. There exists a pseudo-orthonormal frame {e3, e, }
satisfying (2.6) such that —H = h(ej,e) = e3. Let us regard S3(1) as a hyper-
surface of lEg via (1.1). Denote by VS and V be the Levi-Civita connections of
S3(1) and E3, respectively. Let D and A be the normal connection and the shape
operator of M in EJ respectively; Let D and A the corresponding quantities for
M in S3(1). Then we have

DE=D¢ Az=A; VxE=VxE (3.1)

for any normal vector field ¢ of M in S3(1) and any X € TM. Since M has parallel
mean curvature vector H, from Lemma 2.2 we have

Des = Dey = Des = Dey = 0. (3.2)
Let
h(ep,e1) = wes + Bey, h(er,ex) =e3, h(ez, e2) = yes + Jey, (3.3)
for some functions «, B, 7y, 6. By (2.3), (2.5) and (2.6), we have
Ae3=<gg), Ae4=<i'{). (3.4)
From Lemma 2.2 and the Ricci equation we have [A,,, A,,] = 0, which implies

that a6 = B. It follows from (3.3) and the Gauss equation that the Gauss curva-
ture K of M is given by

K=1+2as=1+2pBy. (3.5)

Case (A): K # 1. It follows from (3.5) that «, B, 5,y # 0. In this case, (2.7), (3.2)
and (3.3) show that Codazzi equation (2.4) reduces to

er(a) = 2w, ex(B) =2wyB, e1(y) = —2wiy, e1(d) = —2wqd, (3.6)
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which together with a6 = By forces thate;(In | /B |) = e;(In | v/J |) = 0 for
i = 1,2. Then there exists a nonzero real number ¢ such that

x=cp, v = cd. (3.7)

By (2.7) and (3.6), we have [,B_%el,é’_%ez] = 0. Then there exists a coordinate
system {x,y} such that

oo = ,3_%61, a% = 5_%62, g = —(ﬁé)_%dxdy. (3.8)

We denote p = (B )_%, a direct computation shows that the Levi-Civita connec-
tion of g satisfies

d d d d d

Moreover, from (3.3), (3.4), (3.7) and (3.8), we have

0 o 0o 0 0 0
gl g) = ce3 + €4, h(gl @) — p€3, h(@, @) = ce3 +e4, (310)

(0 p! (1 et
Ae3—<p_1 . ) Ae4_<cp_1 ) (3.11)

By (3.9), (3.10), and (2.1), we have

h(

Lyy = (Inp)xLy+ces+es, Ly =p(es+L), Ly, = (Inp),Ly+cez+es (3.12)
The compatibility condition of this system is given by Poisson equation:
(Inp)xy = 2cp 1 +p. (3.13)
Moreover, if we let { = —ce3z + e4, 17 = ce3 + ey, then

Di=Dy=0, (&) =2 (nn)=-2, (&n) =0 As=1I

Consider the map ¢ : M — I3 defined by ¢(p) = L(p) + &(p). Then we have
Vxp = 0for X € TM. So ¢ = L+ ¢ is a constant vector, say ¢y € E3. Thus,
L — ¢y = —¢ and hence

(L —co, L — ¢p) = 2¢ = constant. (3.14)

Case (A.a): ¢ > 0. In this case, (3.14) implies that M lies in S5(co,7*) with
12 = 1/2c. The mean curvature vector H' of M in S5(co,7?) and the mean curva-
ture vector H in [ are related by H = H’ — r?(L — ¢g). Since M is marginally
trapped in S3(1), we have 1 = (H', H') 4 2. This gives (H', H') = 1 — r%. We can
conclude that M is non-flat. In fact, if M is flat, We choose p = 1 and hence from
(3.13) we have that c = —1/2. This is a contradiction. Hence we get case (5).
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Case (A.b): ¢ < 0. In this case (3.14) implies that M lies in S3(1) N Hi(co, —1?)
with —r2 = 1/2c. Since the mean curvature vector H' of M in H{(co, —%) and H
in [E5 are related by H = H' +r?(L — ¢¢), and since M is marginally trapped in
S3(1), we have 1 = (H', H') — r>. This gives (H',H') = 1+ r%. If M is non-flat,
we get case (6).

If M is flat, we choose p = 1 and hence ¢ = —1/2 from (3.13). In this case, the
PDE system (3.12) becomes

1 1
Lyy = —533 +ey, Ly=e3+L, Ly = _563 + ey

Weputx = (u+0)/v2,y = (u—0)/v2, then
Luip =0, Luuu =0, Lovo = —4Lo.
Solving these system of differential equation, we obtain
L=cu-+ cou® + €3 Sin 20 + ¢4 cos 20 + cs,

for some vectors ¢; € ]Eg,i =1,---,5. After choosing suitable initial conditions,
we obtain case (7).

Case (B): K = 1. It follows from (3.5) that a6 = By = 0 and M is a Lorentz
surface of curvature one. From Lemma 2.1, we may choose coordinates {x,y} on
M so that the metric tensor of M is given by

2

The Levi-Civita connection of the surface M is then given by

2 2
Vaxax = —x——wax, Vaxay - 0, Vayay = —x——way. (3.16)
And (3.3) becomes
we3 + Pey e3 ves + dey
h(dy,dy) =2———, h(9dy,9y) =2—"—, h(dy,9)) =2-———. (3.17
Ourda) =20y MO0 22 MO =G e G
It follows from (3.16) and (3.17) that L : M — S3(1) C [ satisfies
—LL + ———— (we3 + Pey) (3.18)
xx x_|_y X (x+y)2 3 ,34/ .
2
Ly, = L), 3.19
xy (x +]/)2 (e3+1L) ( )
2
Lyy = —mLy + W(’}’eg + 564). (320)

Case (B.a): § = B = 0. In this case, A., = 0, which together with (3.1) and (3.2)
shows that e3 is a constant lightlike vector in E5. So, without loss of generality,
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we may put e3 = (1,0,0,0,1) € E3. It follows that M lies in Ko N S5(1) and the
mean curvature vector of M in S5(1) is a constant lightlike vector in 3.

On the other hand, the compatibility conditions of the system (3.18)—(3.20)
are given by

2 2
vy Tyt

o, = (3.21)

Hence there exist functions p(x) and g(y) such that « = p(x)(x +y)? and
= q(y)(x + y)?. Then (3.18) and (3.20) become

2 2
Ly = —mLx +2p(x)es, Ly = —mLy +2q(y)es. (3.22)
Solving equation (3.22) gives

C1XY + C2X + c3y + ¢4
x+y

L= f(x,y)es +

4

where

fley) =2( [ s+ [[ aa®) - 5[] oo+ [[[ awar)

From (3.19), we have ¢y + c3 + 2e3 = 0. After choosing suitable initial conditions,
we obtain case (2).
Case (B.b): 6 = v = 0. In this case, equation (3.20) becomes

2
Solving (3.23), we have
L= ——p(x) +q(x)
= x—l—yp q

for some [E3-valued functions p(x) and g(x). Thus we have

1 1 1

Le= P - mp’<x>+q'<x>, L= —GayEf® 629

By using (3.24) and g = — G ) »dxdy, we obtain

(pp)=.d)=.q)=0, (pg)=-2 (.p)=

This gives case (3).
Case (B. ¢): « = B = 0. After interchanging x and y, we get case (3) as well.
Case (B. d): « = = 0. In this case, A,, = I. So Vxes = —X for X € TM and
hence L + e4 is a constant vector in [E3, say ¢g. Since ey is tangent to S3(1), we find
(L,eq) = 0. Combining this with (L, L) = 1 gives (co,co) = 1. Hence ¢y is a unit
spacelike vector. Without loss of generality, we may put co = (0,0,0,0,1). On
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the other hand, from (L — co, L — co) = (es, ea) = 0 we get (L, co) = 1. It follows
from (L,L) = (L,co) = 1 that x2 +x3 = x5+ x3, x5 = 1, where x,- -, x5 are
coordinates of L in [E3. So, M lies in £C3 = {(y,1) € E3 : (y,y) = 0,y € E5} C
S3(1).

On the other hand, the compatibility condition of the system (3.18)—(3.20) are
given by

2 2
= , 5 f— 5
x+y‘B x4ty

By

Hence there exist function ci(x) and c(y) such that B = c1(x)(x +y)?/2,
5 = ca(y)(x +y)?/2. Then (3.18) and (3.20) become

2 2
Lxx — _x—‘f'ny + Cl(X)(CO — L), Lyy = _x——l—yLy + Cz(y)(CO — L) (325)
Solving (3.25) gives
L(x,y) = mf(x/]/) =+ Co, (3.26)

where f(x,y) is a vector-valued function lying in the light cone £C(cp) and satis-
tying

fax = —c1(x)f, fyy = —2(y)f. (3.27)
Equation (3.27) implies that
floy) = ux) *z(y) +o(x) xw(y), (3.28)

where u,v,z, w are curves in lEg satisfying
u”(x) + er(x)u(x) = 0" (x) + c1(x)o(x) = 2"(y) + c2(y)z(y) =
w’(y) + c2(y)w(y) = 0.
Hence (3.26) and (3.28) imply that

1
x+y

L(x,y) = ——(u(x) *2(y) + 0(x) * w(y)) + co. (3.29)

By applying (3.29) and g = —ﬁdxdy, we have

(o (x) # 2(y) + 0/ (x) # w0(y), u(x) * 2 (y) +0(x) * 0 (y)) = ~2.

This gives case (4).
If (H, H) is a nonzero constant. Then there exists a pseudo-orthonormal frame
{e3, e4} satisfying (2.6) such that —H = h(eq,ep) = e3 + aeq(a # 0). Let

h(ei,e1) = ez + Bes, h(ei, ex) = e3+aes, h(ey,ez) = vez+des,  (3.30)
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for some functions «, B, 7y, 6. Then

A%:(gg), Ae4:<i¥>. (3.31)

It follows from Lemma 2.2 and the Ricci equation that [A,,, A,] = 0, which im-
plies that a6 = B-y. By (3.30) and Gauss equation, we have

K=1-2a+2a6 =1-2a+2p7. (3.32)

Case (A): K # 1 — 2a. Then from (3.32) we have «, 3, ¢,  # 0. It follows from
(2.7), (3.2) and (3.30) that Codazzi equation (2.4) also reduces to

er(a) = 2w, ep(B) =2wyB, e1(y) = —2wyy, e1(d) = —2wqid6, (3.33)

which together with ad = B shows that there exists a nonzero real number c
such that « = ¢,y = ¢4, and [,B_%el,é_%ez] = 0. Then there exists a coordinate
system {x, y} such that

9 13 1
== Se, 2y =° 2, g = —(B6) 2dxdy. (3.34)

Denote by p = (B6)~ 2, then Gauss curvature in (3.32) becomes
K=1-2a+2c/p?% (3.35)

and the Levi-Civita connection of ¢ still satisfies (3.9). Moreover, from (3.30),
(3.31) and (3.34) we have

0 0 Jd 0 0
h(a,a) = ce3 + ey, h(a,@) = p(es + aeyq), h(@,@) =ce3+ey, (3.36)
a -1 1 cp !
A€3 = ( p_l pa ) 7 A84 - ( Cp—l ‘01 ) * (3'37)

By applying (3.9) and (3.36), we have that L : M — S5 C EJ satisfies

Lyy = (Inp)xLy +ce3 +e4, Lyy = p(ez +aes + L), Ly = (Inp),L, + ce3 + ey.
(3.38)
The compatibility condition is

(Inp)xy =2co~ " + (1 — 2a)p. (3.39)
Case (A.a): ca # 1. Let { = —ce3 + es, 1] = ce3 + ey, then
DE=Dn=0, (56 =2, (pm=-2 (&n) =0 Az=1-cal
Consider the map ¢ : M — [E5 defined by ¢(p) = L(p) + 1=¢(p). Then

1—ca

Vxtp = 0for X € TMand ¢ = L+ 1_1wc:,‘ is a constant vector, say ¢y € E3.

SOL—CO = cal—l

¢ and hence

2c
(L —co,L—cq) = 17 = constant. (3.40)
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Case (A.a.l): ¢ > 0. Equation (3.40) implies that M lies in S5(co,r*) with
r> = (ca — 1)?/(2c). Since the mean curvature vector H' of M in S3(co,7*) and
the mean curvature vector H in [Ej are related by H = H' — r>(L — ¢), hence we
have (H,H) = (H',H') +r%. This gives (H’, H') = 1 — r> — 2a. If M is non-flat,
we obtain case (8) of Theorem 3.1.

If M is flat, it follows from (3.35) that p* = 5 azfl. We choose p = 1 and hence
c=a—1/2>0,thena > 1/2. In this case, (3.36) and (3.37) become

2

Jd 0 Jd 0 Jd 0
h(a, a) = h(@, @) = (a — 1/2)63 +e4, h(a, @) = €3+ae4, (341)

1 1 —1/2
w=(11) a=(e) om

By applying (3.41) we have that L : M — S5 C [ satisfies

1

Putx = (u+v)/v2and y = (u —v)/v/2, then
Luo=0, Luwu= Ly, Loy = —nLo. (3.43)
where m = a(2a + 3), n = 2a%> — 5a + 4. Solving equation (3.43) we obtain
L = ¢q cos v/mu + c; sinv/mu + c3 cos \/nv + c4 sin v/nov + cs.

After choosing suitable initial conditions, we obtain case (10) fora > 1/2.

Case (A.a.2): ¢ < 0. Equation (3.40) implies that M lies in Hj (co, —7*) N S5(1)
with 72 = —(ca —1)%/(2c). Since the mean curvature vector H' of M in H5(co, )
and the mean curvature vector H in [E3 are related by H = H' + r*(L — ¢p), hence
we have (H,H) = (H', H') — r?. This gives (H', H') = 1+ r?> — 2a. If M is non-
flat, we obtain case (9) of Theorem 3.1.

If M is flat, similar to case (A.a.1) we also choose p = 1and c = a — % <0,
then a < 1. Just like case (A.a.1), we put x = (1 +v)/v2andy = (u—0)/V2,
then

Lypy =0, Lyyu=—mLy, Lyp = —nLy, (3-44)

where m = a(2a +3), n = 2a*> — 5a + 4.
(@Ifa=0o0ra= —%, then m = 0, and n = 4 or n = 16. Solving (3.44), we
have
L = cyu? 4 cout + ¢35 cos /1o + ¢4 sin /1o + cs.

After choosing suitable initial conditions, we obtain case (11) or case (12).
(b) If —% < a < 0, solving (3.44) we have

L = ¢q cosh \/—mu + ¢y sinh v/—mu + c3 cos /nv + c4 sin /nv + cs.

After choosing suitable initial conditions, we obtain case (13).
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(olfa < —% or0<a< %, solving (3.44) we have

L = ¢q cos /mu + c3 sin\/mu + c3 cos \/nv + ¢4 sin v/nov + cs.

After choosing suitable initial conditions, we also obtain case (10).
Case (A.b): ca = 1. It follows from (3.37) that A_ ¢, 1., = 0, which implies that
—ce3 + e4 is a constant vector, say ¢y € ]Eg and it is easy to check that (co, cg) = 2c.
Case (Ab.1): ¢ > 0. In this case, M lies in S5 N 77, where 7 is hyperplane
of index 2 in ]Eg If M is non-flat, we get case (14). If M is flat, from (3.35) we

have p? = 72 and hence p is constant. We choose p = 1, then ¢ = @ and

V1 V17+1
.

a= ZH. Then we obtain case (10) for a =
Case (A.b.2): ¢ < 0. In this case, M lies in S3 N 7r, where 7 is hyperplane of
index 1 in ]Eg If M is non-flat, we get case (15). If M is flat, similar to case (A.b.1)
we get ¢ = % and a = 1_4—‘/ﬁ. Then we obtain case (13) fora = %ﬁ.
Case (B): K = 1 — 2a. In this case, M is a Lorentz surface of constant Gauss
curvature and ad = By = 0 from (3.32). We choose the metric of the surface given
by Lemma 2.1 and define ¢; = %ax, er = %By. Then from (3.30), we have

d 9, 0 9., d 5
h(g, a) = m*(ae3 + Bey), h(g, @) = m*(e3+aey), h(ay’ ay) = m*(ye3 + dey).
(3.45)
From (3.31), we have
- 0 d - d 0
V%eg — g—ﬁ@, V%eg —5$—aay,
(3.46)
- 0 d - d )
V%a}— g— ay, v%&}——’ya—@
It follows from (2.9) and (3.45) that
2
Lix = %Lx + mz(zxe3 + Bes), (3.47)
Ly, = m*(e3 +aes + L), (3.48)
2my )
Ly, = TLy + m*(ye3 + dey). (3.49)
The compatibility conditions of system (3.46) are given by
2m 2m 2 2
ay+a—L =0, B +p=L =0, 5+6=E=0, 1t+r= =0 (350
The compatibility condition of the system (3.47)-(3.49) is given by
1 2
(Inm)y, = (E —a)m-.
Case (B.a): K > 0,i.e.a < % One can choose local coordinates (x,y) such that

1

mixy) = — .
L-a(x+y)
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Case (B.a.1): « = = 0. Equation (3.47) becomes

mdxdy, we can get case (16).

Case (B.a.2): v = 6 = 0. After interchanging x and y, we get case (16) as well.

Case (B.a.3): « = v = 0. In this case, A,, = I and hence L + e4 is a constant
vector in [E3, say co. It is easy to check that cp is a spacelike vector and (L, L) =
(L, co) = 1. Without loss of generality, we put cp = (0,0,0,0,1). Hence we have
x% + x% = x% + xi, x5 = 1, where x1, - - - , x5 are coordinates of L in lEg So M lies
in £C3 = {(y,1) € B3 : (y,y) =0,y € E3} C S5(1).

On the other hand, from (3.50) we have B = ¢1(x)/m?,6 = c3(y)/m? for some
functions c1(x), c2(y). Hence (3.47) and (3.49) become

Solving this equation and from g = —

2 2
Lex = —mLx +c1(x)(co—L), Ly = _x—-l-]/Ly +c(y)(co—L). (3.51)

Solving this equation and from g = mdxdy, we obtain case (17).

Case (B.a.4): B = 0 = 0. Similar to case (B.a.3), we get case (17) as well.
Case (B.b): K < 0,i.e. a > % In this case, one can choose local coordinates
(x,y) such that

m(x,y) = 11 . (3.52)
a—5(x—y)

Case (B.b.1): « = B = 0. Equation (3.47) becomes

Liv = ——— L.
x—Yy
Solving this equation and from g = —mdxdy, we have case (18).
Case (B.b.2): v = § = 0. After interchanging x and y, we get case (18) as well.
Case (B.b.3): &« = o = 0. similar to case (B.a.3), we conclude that M lies in
£ ={(y,1) € E5: (y,y) =0,y € E3} C S3(1). In this case, (3.47) and (3.49)
become

Lxx:_

2
v ny +c3(x)(co — L), Ly = x—_yLy +ca(y)(co — L).

Solving this equation and from g = — mdxdy, we obtain case (19).
Case (B.b.4): p = 6 = 0. In this case, similar to case (B.2.3), we get case (19) as
well.
Conversely, it is easy to verify that each of the 19 types of Lorentz surfaces in
S3(1) has parallel mean curvature vector. u
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4 Lorentz surfaces in H5(—1)

In this section, we will give the classification of Lorentz surfaces in H3(—1) with
parallel mean curvature vector. The classification and the proof are similar to the
onesin S5(1). In fact, themap ¢ : E5 — E3 : (x1, x2, X3, X4, X5) > (X3, X4, X5, X1, X2)
takes S7(1) into H5(—1) and is a conformal map with factor —1. So we omit the
proof here.

Let G, = {(xy,x2,---,x5) € ]Eg : x5 = x1+b}. For any two vectors
a = (ay,...,as), b = (by,...,bs) in E3, we puta xb = (arby,...,asbs). The fol-
lowing theorem classifies Lorentz surfaces with parallel mean curvature vector
in Hy(—1).

Theorem 4.1. Let M be a Lorentz surface with parallel mean curvature vector in de
Sitter space-time Hy(—1) C I3, then L is congruent to a surface of the following 19
families.

1. A minimal Lorentz surface of Hy(—1);

2. A Lorentz surface of curvature -1 with constant lightlike mean curvature vector,
lying in Go N Hy(—1), which is defined by

x+y  xy—1 xy+1

Loy = (o), T HoL BEL sy,

for some function f(x,y).

3. A Lorentz surface of curvature -1 defined by L = —@ +q(y), where p(y) is a

y
curve lying in the light cone LC and q(y) is a null curve satisfying

(', q)=0(p.q)==2{"p) =%
4. A Lorentz marginally trapped surface of curvature -1 in H5(—1) and lies in
L£C3={(Q,y) € E3: (y,y) =0,y € E3} C Hy(—1), which is defined by
1
x—Yy
where co = (1,0,0,0,0), u” (x) + 2c1 (x)u(x) = 0" (x) +2c1(x)v(x) = 2" (y) +
*

22(y)z(y) = w"(y) + 2c2(y)w(y) = 0 and (u'(x) *z(y) + v'(x)
u(x) =2/ (y) + v(x) xw'(y)) = —2 for some functions c1(x) and cp(y).

L(x,y) = (u(x) x2(y) +o(x) xw(y)) + co,

5. anon-flat Lorentz surface which lies in Hy (co, —r?) N Hy(—1) such that the mean
curvature vector H' of M in H5 (co, —1?) N H3(—1) satisfies (H',H') = —1+ 12

6. a non-flat Lorentz surface which lies in S3(co,*) N H3(—1) such that the mean
curvature vector H' of M in S3(co, ¥?) N H3(—1) satisfies (H',H') = —1 —r2.

7. A flat marginally trapped surface defined by

L_<sin2u cos2u Z]2_|_1_5 vz—|—1— i)
2\/§I 2\/§I 8/ 8/\/5 °
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8.

10.

11.

12.

13.

14.

15.

16.

17.

A non-flat CMC surface lying in H5(co, —r*) N Hy(—1) such that the mean cur-
vature vector H' of M in H5(co, —r*) N H3(—1) satisfies (H',H') = —1 —2a +
12 for a nonzero real number a.

. anon-flat CMC surface lying in S3(co, r*) N H3(—1) such that the mean curvature

vector H' of M in S3(co,7*) N Hy(—1) satisfies (H',H') = —1—2a — 1% for a
nonzero real number a.

A flat surface defined by

L—<i 1_L 1 cosy/mu siny/mu cos+/nv sinﬁv)

2w am Vam v v
where m = 2a> +5a+4,n =2a — 3 fora € (—oo, —
A flat surface defined by

L:(vz 15 cos2u sin2u v 13)'

+_I 7 —,U+—
8" 2v2' 2v2 V2 8

N|—
N
-
—~
N[—

~
(@)
~—
-
—~
NI
~
(@)
~—

A flat surface defined by
[ — (vz 33 cos4u sindu v , 29) ‘

+_/ 7 —F= 0 +_
16" 42" 42 V2 16

A flat surface defined by

[ — cosy/mu sin+/mu sinhy/—nv cosh/—nv n i_i_l
Vam T am T /—an T /=2n T TV 2m 2n ’

where m = 2a> 4+ 5a+4,n =2a—3fora € (0,3).

A non-flat CMC surface lying in Hy(—1) N 7, where 7t is hyperplane of index 3
in E3.
3

A non-flat CMC surface lying in Hy(—1) N 7z, where 7t is hyperplane of index 2
in E3.

A non-flat surface defined by

L(x,y) = — u(y) +o(y),

x+y
where u(y) is a curve lying in the light cone LC and v(y) is a null curve satisfying
(W', 0"y =0, (', u') = =135 and (u,v') = 327 for a real number a < —1/2.

A non-flat CMC surface lying in LC5 = {(L,y) € E3 : (y,y) =0,y € E3}} C
H3(—1) defined by
1

L(x,) = 35 (403) #2(9) +0(x) = wly) +co,
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where cg = (1,0,0,0,0), u, v, z,w are curves in I3 satisfying u" (x) — c1 (x)u(x)
= v"(x) —a(x)o(x) = 2"(y) —c2(y)z(y) = w"(y) — c2(y)w(y) = 0, and
(' (x)xz(y) + 0 (x) xw(y), u(x)*z'(y) +o(x) ' (y)) = ﬁforfunctions
c1(x), c2(y) and for a real number a < —1/2.

18. A non-flat surface defined by

Lixy) = —s—ul) +o),
where u(y) is a curve lying in the light cone LC and v(y) is a null curve satisfying
(W', 0"y =0, (', u') = — 527 and (u,v') = — 52 for a real number a > —1/2.

19. A non-flat CMC surface lying in £LC3 = {(1,y) € E}: (y,y) =0,y € E3} C
H3(—1) defined by

1
x—y

L(x,y) = ——(u(x) * 2(y) + 0(x) * w(y)) + co,

where cg = (1,0,0,0,0), u, v, z,w are curves in IE3 satisfying u" (x) — c1 (x)u(x)
= v'(x) —i(x)o(x) = 2"(y) —e2y)z(y) = w'(y) —c(y)wly) = 0, and
(/(x) #2(y) +0'(x) x w(y), u(x) *2'(y) +v(x) *w'(y)) = — gz for func-
tions c1(x), c2(y) and for a real number a > —1/2.

Remark 4.2. Case (2)—(7) are marginally trapped Lorentz surfaces with parallel
mean curvature vector in Hg‘(—l) C ]Eg
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