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Abstract

Lorentz surfaces with parallel mean curvature vector in E
4
2 have been

classified in [14]. In this paper, we continue to classify Lorentz surfaces with
parallel mean curvature vector in pseudo-Riemannian space forms S4

2(1) and
H4

2(−1). Consequently, we achieve the complete classification of Lorentz
surfaces with parallel mean curvature vector in 4-dimensional neutral indef-
inite space form with index 2.

1 Introduction

Let E
m
t denote the pseudo-Euclidean m-space equipped with pseudo-Euclidean

metric of index t given by

g0 = −
t

∑
i=1

dx2
i +

n

∑
j=t+1

dx2
j ,
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where (x1, ..., xn) is the rectangular coordinate system of E
m
t . Put

Sk
s(c0, r2) =

{
x ∈ E

k+1
s |〈x − c0, x − c0〉 = 1/r2

> 0
}

, (1.1)

Hk
s (c0,−r2) =

{
x ∈ E

k+1
s+1 |〈x − c0, x − c0〉 = −1/r2

< 0
}

, (1.2)

where 〈, 〉 is the associated inner product and c0 is a fixed point. Then Sk
s(c0, r2)

and Hk
s (c0,−r2) are complete semi-Riemannian manifolds with index s of con-

stant curvature r2 and −r2, respectively. We denote Sk
s(c0, r2) and Hk

s (c0,−r2) by
Sk

s (r
2) and Hk

s (−r2) when c0 is the origin. In general relativity, the Lorentz mani-
folds E

k
1, Sk

1(r
2) and Hk

1(−r2) are known as the Minkowski, de Sitter and anti-de
Sitter space, respectively.

It is well known that submanifolds with parallel mean curvature vector play
important roles in differential geometry, theory of harmonic maps as well as in
physics. Surfaces with parallel mean curvature vector in Euclidean space were
classified in the early 1970s by Chen and Yau[10]. Further, spacelike surfaces
with parallel mean curvature vector in arbitrary indefinite space forms were com-
pletely classified (see [8, 11, 12, 13]). However, the study of the classification of
Lorentz surfaces is less relative to the spacelike surfaces. In [14], we firstly clas-
sified Lorentz surfaces with parallel mean curvature vector in E

4
2. Soon after,

Lorentz surfaces with parallel mean curvature vector in pseudo-Euclidean spaces
with arbitrary codimension and index were classified in [15] and [16], indepen-
dently. (For an up-to-date survey on submanifolds with parallel mean curvature
vector, see [17]). Hence it is an interesting problem to classify all Lorentz surfaces
with parallel mean curvature vector in non-flat pseudo-Riemannian space forms.

In this paper, we achieve the classification of Lorentz surfaces with parallel
mean curvature vector in 4-dimensional pseudo-Riemannian space forms S4

2(1)
and H4

2(−1). Our results state that there exist 19 families of Lorentz surfaces in
S4

2(1) and H4
2(−1), respectively.

2 Preliminaries

2.1 Basic formulas

Let R4
2(c) denote an 4-dimensional pseudo-Riemannian space form with index 2

of constant curvature c. Then the curvature tensor R̃ of R4
2(c) is given by

R̃(X, Y)Z = c{〈Y, Z〉X − 〈X, Z〉Y}.

Let M be a Lorentz surface in R4
2(c). Denote by ∇ and ∇̃ the Levi Civita

connections of M and R4
2(c), respectively. For vector fields X and Y tangent to M

and vector field ξ normal to M, the formulas of Gauss and Weingarten are given
by (cf. [10, 18, 19])

∇̃XY = ∇XY + h(X, Y), (2.1)

∇̃Xξ = −AξX + DXY, (2.2)
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where h, A and D are the second fundamental form, the shape operator and the
normal connection, respectively. It is well known that h and A are related by

〈h(X, Y), ξ〉 = 〈Aξ X, Y〉. (2.3)

We define the mean curvature H = 1
2 trace h. The equation of Gauss and Codazzi

are given respectively by

〈R(X, Y)Z, W〉 = c{〈Y, Z〉〈X, W〉 − 〈X, Z〉〈Y, W〉}
+ 〈h(Y, Z), h(X, W)〉 − 〈h(X, Z), h(Y, W)〉,

(∇̄Xh)(Y, Z) = (∇̄Yh)(X, Z),

where R is the curvature tensor of M and ∇̄h is defined by

(∇̄Xh)(Y, Z) = DXh(Y, Z) − h(∇XY, Z)− h(Y,∇X Z). (2.4)

We denote RD the curvature tensor associated with the normal connection D, i.e.,

RD(X, Y) = DXDY − DYDX − D[X,Y],

then for vector fields X and Y tangent to M and vector field ξ, η normal to M, the
Ricci equation is given by

〈RD(X, Y)ξ, η〉 = 〈[Aξ , Aη]X, Y〉.

2.2 Basic definitions

A surface in a pseudo-Riemannian 3-manifold (or a light cone) is called CMC if
its mean curvature vector H satisfies 〈H, H〉 = constant 6= 0.

A vector v is called spacelike (timelike) if 〈v, v〉 > 0 (〈v, v〉 < 0). A nonzero
vector v is called lightlike if 〈v, v〉 = 0. A curve z : I → E

m
t defined on an open

interval I ⊂ R is called null if its velocity vector z′(x) is lightlike for each x ∈ I.
A surface in a semi-Riemannian manifold is called marginally trapped if its

mean curvature vector is lightlike. Recently, marginally trapped surfaces have
been studied from a mathematical viewpoint, such as in [1, 2, 3, 4, 5, 6, 7, 8, 9].

2.3 Light cones

The light cone LCn−1
s (c0) with vertex c0 in E

n
s is defined by

LCn−1
s (c0) = {x ∈ E

n
s : 〈x − c0, x − c0〉 = 0} .

We simply denote the light cone LCn−1
s (0) by LC if there is no confusion possible.

The light cone LCn−1
s can be naturally embedded in Sn

s (1) via

ι : LCn−1
s ⊂ E

n
s → Sn

s (1) ⊂ E
n+1
s : y 7→ (y, 1) ∈ E

n+1
s .

The light cone LCn−1
s can be naturally embedded in Hn

s (−1) via

ι : LCn−1
s ⊂ E

n
s → Hn

s (−1) ⊂ E
n+1
s+1 : y 7→ (1, y) ∈ E

n+1
s+1 .
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2.4 Moving frames.

We assume that M is a Lorentz surface in R4
2(c), {e1, e2} is a local tangent frame

and {e3, e4} is a local normal frame, which satisfy

〈e1, e1〉 = 〈e2, e2〉 = 0, 〈e1, e2〉 = −1, (2.5)

〈e3, e3〉 = 〈e4, e4〉 = 0, 〈e3, e4〉 = −1. (2.6)

If we let

∇Xe1 = ω1
1(X)e1 + ω2

1(X)e2, ∇Xe2 = ω1
2(X)e1 + ω2

2(X)e2,

then from (2.5) we obtain that ω2
1 = ω1

2 = 0 and ω1
1 = −ω2

2. If we put ω = ω1
1,

then

∇Xe1 = ω(X)e1, ∇Xe2 = −ω(X)e2 . (2.7)

We put ω(e1) = ω1 and ω(e2) = ω2. Similarly, for some one-form φ, we have

DXe3 = φ(X)e3, DXe4 = −φ(X)e4. (2.8)

2.5 Some lemmas

We introduce some results for later use.

Lemma 2.1. [20]. There exist local coordinates (x, y) on M2
1 such that the metric of

the surface is given by g = −m2(x, y)(dx ⊗ dy + dy ⊗ dx) for some positive function
m(x, y). The Levi-Civita connection of the surface is then given by

∇∂x
∂x =

2mx

m
∂x, ∇∂x

∂y = 0, ∇∂y
∂y =

2my

m
∂y, (2.9)

and its Gaussian curvature is K = 2(mmxy − mxmy)/m4.

Similar to the Lemma 2.2 of [14], we establish the following lemma.

Lemma 2.2. Let M be a Lorentz surface in R4
2(c) with parallel mean curvature vector,

then (1) φ = 0, which implies RD = 0; (2) 〈H, H〉 is constant.

3 Lorentz surfaces in S4
2(1)

Let Ka = {(x1, x2, · · · , x5) ∈ E
5
2 : x5 = x1 + a}. For any two vectors a =

(a1, . . . , a5), b = (b1, . . . , b5) in E
5
2, we put a ∗ b = (a1b1, . . . , a5b5). The follow-

ing theorem classifies Lorentz surfaces with parallel mean curvature vector in
S4

2(1).
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Theorem 3.1. Let M be a Lorentz surface with parallel mean curvature vector in de Sitter
space-time S4

2(1) ⊂ E
5
2, then L is congruent to a surface of the following 19 families.

1. A minimal Lorentz surface of S4
2(1);

2. A Lorentz surface of curvature one with constant lightlike mean curvature vector,
lying in K0 ∩ S4

2(1), which is defined by

L(x, y) =

(
f (x, y),

xy − 1

x + y
,

xy + 1

x + y
,

y − x

x + y
, f (x, y)

)
,

for some function f (x, y).

3. A Lorentz surface of curvature one defined by L = − p(x)
x+y + q(x), where p(x) is

a curve lying in the light cone LC and q(x) is a null curve satisfying 〈p′, q′〉 =
0, 〈p, q′〉 = −2, 〈p′, p′〉 = 4;

4. A Lorentz marginally trapped surface of curvature one in S4
2(1) and lies in

LC3
2 = {(y, 1) ∈ E

5
2 : 〈y, y〉 = 0, y ∈ E

4
2} ⊂ S4

2(1), which is defined by

L(x, y) =
1

x + y
(u(x) ∗ z(y) + v(x) ∗ w(y)) + c0,

where c0 = (0, 0, 0, 0, 1), u′′(x) + c1(x)u(x) = v′′(x) + c1(x)v(x) = z′′(y) +
c2(y)z(y) = w′′(y) + c2(y)w(y) = 0 and 〈u′(x) ∗ z(y) + v′(x) ∗ w(y),
u(x) ∗ z′(y) + v(x) ∗ w′(y)〉 = −2 for some functions c1(x) and c2(y).

5. a non-flat Lorentz surface which lies in S4
2(c0, r2) ∩ S4

2(1) such that the mean cur-
vature vector H′ of M in S4

2(c0, r2) ∩ S4
2(1) satisfies 〈H′, H′〉 = 1 − r2.

6. a non-flat Lorentz surface which lies in H4
1(c0,−r2) ∩ S4

2(1) such that the mean

curvature vector H′ of M in H4
1(c0,−r2) ∩ S4

2(1) satisfies 〈H′, H′〉 = 1 + r2.

7. A flat marginally trapped surface defined by

L =

(
u, u2 +

1

2
, u2 + 1,

1

2
sin 2v, cos 2v

)
.

8. A non-flat CMC surface lying in S4
2(c0, r2) ∩ S4

2(1) such that the mean curvature
vector H′ of M in S4

2(c0, r2)∩ S4
2(1) satisfies 〈H′, H′〉 = 1− r2 − 2a for a nonzero

real number a.

9. a non-flat CMC surface lying in H4
1(c0,−r2)∩S4

2(1) such that the mean curvature

vector H′ of M in H4
1(c0,−r2) ∩ S4

2(1) satisfies 〈H′, H′〉 = 1 + r2 − 2a for a
nonzero real number a.

10. A flat surface defined by

L =

(
cos

√
mu√

2m
,

sin
√

mu√
2m

,
cos

√
nv√

2n
,

sin
√

nv√
2n

, ±
√

1 +
1

2m
− 1

2n

)
,

where m = a(2a + 3) and n = 2a2 − 5a + 4 for a ∈ (−∞,− 3
2 ) ∪ (0, 1

2) ∪
(1

2 ,+∞).
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11. A flat surface defined by

L =

(
u√
2

, u2 +
13

8
, u2 +

15

8
,

cos 2v

2
√

2
,

sin 2v

2
√

2

)
.

12. A flat surface defined by

L =

(
u√
2

, u2 +
29

16
, u2 +

33

16
,

cos 4v

4
√

2
,

sin 4v

4
√

2

)
.

13. A flat surface defined by

L =

(
±
√

1

2n
− 1

2m
− 1,

sinh
√
−mu√

−2m
,

cosh
√
−mu√

−2m
,

cos
√

nv√
2n

,
sin

√
nv√

2n

)
,

where m = a(2a + 3) and n = 2a2 − 5a + 4 for a ∈ (− 3
2 , 0).

14. A non-flat CMC surface lying in S4
2 ∩ π, where π is hyperplane of index 2 in E

5
2.

15. A non-flat CMC surface lying in S4
2 ∩ π, where π is hyperplane of index 1 in E

5
2.

16. A non-flat surface defined by

L(x, y) = − 1

x + y
u(y) + v(y),

where u(y) is a curve lying in the light cone LC and v(y) is a null curve satisfying
〈u′, v′〉 = 0, 〈u′, u′〉 = 4

1−2a and 〈u, v′〉 = 2
2a−1 for a real number a < 1/2.

17. A non-flat CMC surface lying in LC3
2 = {(y, 1) ∈ E

5
2 : 〈y, y〉 = 0, y ∈ E

4
2} ⊂

S4
2(1) defined by

L(x, y) =
1

x + y
(u(x) ∗ z(y) + v(x) ∗ w(y)) + c0,

where u, v, z, w are curves in E
5
2 satisfying u′′(x) + c1(x)u(x) = v′′(x) +

c1(x)v(x) = z′′(y)+ c2(y)z(y) = w′′(y)+ c2(y)w(y) = 0, and 〈u′(x) ∗ z(y)+
v′(x) ∗w(y), u(x) ∗ z′(y)+ v(x) ∗w′(y)〉 = 2

2a−1 for functions c1(x), c2(y) and
for a real number a < 1/2.

18. A non-flat surface defined by

L(x, y) =
1

x − y
u(y) + v(y),

where u(y) is a curve lying in the light cone LC and v(y) is a null curve satisfying
〈u′, v′〉 = 0, 〈u′, u′〉 = 4

1−2a and 〈u, v′〉 = 2
2a−1 for a real number a > 1/2.
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19. A non-flat CMC surface lying in LC3
2 = {(y, 1) ∈ E

5
2 : 〈y, y〉 = 0, y ∈ E

4
2} ⊂

S4
2(1) defined by

L(x, y) =
1

x − y
(u(x) ∗ z(y) + v(x) ∗ w(y)) + c0,

where c0 = (0, 0, 0, 0, 1), u, v, z, w are curves in E
4
2 satisfying u′′(x) + c1(x)u(x)

= v′′(x) + c1(x)v(x) = z′′(y) + c2(y)z(y) = w′′(y) + c2(y)w(y) = 0, and
〈u′(x) ∗ z(y) + v′(x) ∗ w(y), u(x) ∗ z′(y) + v(x) ∗ w′(y)〉 = − 2

(2a−1)
for func-

tions c1(x), c2(y) and for a real number a > 1/2.

Remark 3.2. Case (2) − (7) are marginally trapped Lorentz surfaces with parallel
mean curvature vector in S4

2(1) ⊂ E
5
2.

Proof. Since M is a Lorentz surface in S4
2(1) with parallel mean curvature vector,

then 〈H, H〉 is constant and H = 0, or H is lightlike, or 〈H, H〉 is a nonzero
constant.

If H = 0, we get case (1).
If H is lightlike, then M is a marginally trapped Lorentz surface in S4

2(1) with
parallel mean curvature vector. There exists a pseudo-orthonormal frame {e3, e4}
satisfying (2.6) such that −H = h(e1, e2) = e3. Let us regard S4

2(1) as a hyper-

surface of E
5
2 via (1.1). Denote by ∇S and ∇̃ be the Levi-Civita connections of

S4
2(1) and E

5
2, respectively. Let D̃ and Ã be the normal connection and the shape

operator of M in E
5
2 respectively; Let D and A the corresponding quantities for

M in S4
2(1). Then we have

D̃ξ = Dξ, Aξ = Ãξ , ∇̃Xξ = ∇S
Xξ (3.1)

for any normal vector field ξ of M in S4
2(1) and any X ∈ TM. Since M has parallel

mean curvature vector H, from Lemma 2.2 we have

D̃e3 = D̃e4 = De3 = De4 = 0. (3.2)

Let

h(e1, e1) = αe3 + βe4, h(e1, e2) = e3, h(e2, e2) = γe3 + δe4, (3.3)

for some functions α, β, γ, δ. By (2.3), (2.5) and (2.6), we have

Ae3 =

(
0 δ
β 0

)
, Ae4

=

(
1 γ
α 1

)
. (3.4)

From Lemma 2.2 and the Ricci equation we have [Ae3 , Ae4
] = 0, which implies

that αδ = βγ. It follows from (3.3) and the Gauss equation that the Gauss curva-
ture K of M is given by

K = 1 + 2αδ = 1 + 2βγ. (3.5)

Case (A): K 6= 1. It follows from (3.5) that α, β, δ, γ 6= 0. In this case, (2.7), (3.2)
and (3.3) show that Codazzi equation (2.4) reduces to

e2(α) = 2w2α, e2(β) = 2w2β, e1(γ) = −2w1γ, e1(δ) = −2w1δ, (3.6)
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which together with αδ = βγ forces that ei(ln | α/β |) = ei(ln | γ/δ |) = 0 for
i = 1, 2. Then there exists a nonzero real number c such that

α = cβ, γ = cδ. (3.7)

By (2.7) and (3.6), we have [β− 1
2 e1, δ−

1
2 e2] = 0. Then there exists a coordinate

system {x, y} such that

∂

∂x
= β− 1

2 e1,
∂

∂y
= δ−

1
2 e2, g = −(βδ)−

1
2 dxdy. (3.8)

We denote ρ = (βδ)−
1
2 , a direct computation shows that the Levi-Civita connec-

tion of g satisfies

∇ ∂
∂x

∂

∂x
= (ln ρ)x

∂

∂x
, ∇ ∂

∂x

∂

∂y
= 0, ∇ ∂

∂y

∂

∂y
= (ln ρ)y

∂

∂y
. (3.9)

Moreover, from (3.3), (3.4), (3.7) and (3.8), we have

h(
∂

∂x
,

∂

∂x
) = ce3 + e4, h(

∂

∂x
,

∂

∂y
) = ρe3, h(

∂

∂y
,

∂

∂y
) = ce3 + e4, (3.10)

Ae3 =

(
0 ρ−1

ρ−1 0

)
, Ae4

=

(
1 cρ−1

cρ−1 1

)
. (3.11)

By (3.9), (3.10), and (2.1), we have

Lxx = (ln ρ)xLx + ce3 + e4, Lxy = ρ(e3 + L), Lyy = (ln ρ)yLy + ce3 + e4. (3.12)

The compatibility condition of this system is given by Poisson equation:

(ln ρ)xy = 2cρ−1 + ρ. (3.13)

Moreover, if we let ξ = −ce3 + e4, η = ce3 + e4, then

Dξ = Dη = 0, 〈ξ, ξ〉 = 2c, 〈η, η〉 = −2c, 〈ξ, η〉 = 0, Aξ = I.

Consider the map ψ : M → E
5
2 defined by ψ(p) = L(p) + ξ(p). Then we have

∇̃Xψ = 0 for X ∈ TM. So ψ = L + ξ is a constant vector, say c0 ∈ E
5
2. Thus,

L − c0 = −ξ and hence

〈L − c0, L − c0〉 = 2c = constant. (3.14)

Case (A.a): c > 0. In this case, (3.14) implies that M lies in S4
2(c0, r2) with

r2 = 1/2c. The mean curvature vector H′ of M in S4
2(c0, r2) and the mean curva-

ture vector H in E
5
2 are related by H = H′ − r2(L − c0). Since M is marginally

trapped in S4
2(1), we have 1 = 〈H′, H′〉+ r2. This gives 〈H′, H′〉 = 1− r2. We can

conclude that M is non-flat. In fact, if M is flat,We choose ρ = 1 and hence from
(3.13) we have that c = −1/2. This is a contradiction. Hence we get case (5).
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Case (A.b): c < 0. In this case (3.14) implies that M lies in S4
2(1) ∩ H4

1(c0,−r2)
with −r2 = 1/2c. Since the mean curvature vector H′ of M in H4

1(c0,−r2) and H
in E

5
2 are related by H = H′ + r2(L − c0), and since M is marginally trapped in

S4
2(1), we have 1 = 〈H′, H′〉 − r2. This gives 〈H′, H′〉 = 1 + r2. If M is non-flat,

we get case (6).
If M is flat, we choose ρ = 1 and hence c = −1/2 from (3.13). In this case, the

PDE system (3.12) becomes

Lxx = −1

2
e3 + e4, Lxy = e3 + L, Lyy = −1

2
e3 + e4.

We put x = (u + v)/
√

2, y = (u − v)/
√

2, then

Luv = 0, Luuu = 0, Lvvv = −4Lv.

Solving these system of differential equation, we obtain

L = c1u + c2u2 + c3 sin 2v + c4 cos 2v + c5,

for some vectors ci ∈ E
5
2, i = 1, · · · , 5. After choosing suitable initial conditions,

we obtain case (7).
Case (B): K = 1. It follows from (3.5) that αδ = βγ = 0 and M is a Lorentz

surface of curvature one. From Lemma 2.1, we may choose coordinates {x, y} on
M so that the metric tensor of M is given by

g = − 2

(x + y)2
dxdy. (3.15)

The Levi-Civita connection of the surface M is then given by

∇∂x
∂x = − 2

x + y
∂x, ∇∂x

∂y = 0, ∇∂y
∂y = − 2

x + y
∂y. (3.16)

And (3.3) becomes

h(∂x , ∂x) = 2
αe3 + βe4

(x + y)2
, h(∂x , ∂y) = 2

e3

(x + y)2
, h(∂y, ∂y) = 2

γe3 + δe4

(x + y)2
. (3.17)

It follows from (3.16) and (3.17) that L : M → S4
2(1) ⊂ E

5
2 satisfies

Lxx = − 2

x + y
Lx +

2

(x + y)2
(αe3 + βe4), (3.18)

Lxy =
2

(x + y)2
(e3 + L), (3.19)

Lyy = − 2

x + y
Ly +

2

(x + y)2
(γe3 + δe4). (3.20)

Case (B.a): δ = β = 0. In this case, Ae3 = 0, which together with (3.1) and (3.2)
shows that e3 is a constant lightlike vector in E

5
2. So, without loss of generality,
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we may put e3 = (1, 0, 0, 0, 1) ∈ E
5
2. It follows that M lies in K0 ∩ S4

2(1) and the

mean curvature vector of M in S4
2(1) is a constant lightlike vector in E

5
2.

On the other hand, the compatibility conditions of the system (3.18)−(3.20)
are given by

αy =
2

x + y
α, γx =

2

x + y
γ. (3.21)

Hence there exist functions p(x) and q(y) such that α = p(x)(x + y)2 and
γ = q(y)(x + y)2. Then (3.18) and (3.20) become

Lxx = − 2

x + y
Lx + 2p(x)e3, Lyy = − 2

x + y
Ly + 2q(y)e3. (3.22)

Solving equation (3.22) gives

L = f (x, y)e3 +
c1xy + c2x + c3y + c4

x + y
,

where

f (x, y) = 2(
∫∫

p(x)dx2 +
∫∫

q(y)dy2)− 4

x + y
(
∫∫∫

p(x)dx3 +
∫∫∫

q(y)dy3).

From (3.19), we have c2 + c3 + 2e3 = 0. After choosing suitable initial conditions,
we obtain case (2).

Case (B. b): δ = γ = 0. In this case, equation (3.20) becomes

Lyy = − 2

x + y
Ly. (3.23)

Solving (3.23), we have

L = − 1

x + y
p(x) + q(x)

for some E
5
2-valued functions p(x) and q(x). Thus we have

Lx =
1

(x + y)2
p(x)− 1

x + y
p′(x) + q′(x), Ly = − 1

(x + y)2
p(x). (3.24)

By using (3.24) and g = − 2
(x+y)2 dxdy, we obtain

〈p, p〉 = 〈p′, q′〉 = 〈q′, q′〉 = 0, 〈p, q′〉 = −2, 〈p′, p′〉 = 4.

This gives case (3).
Case (B. c): α = β = 0. After interchanging x and y, we get case (3) as well.

Case (B. d): α = γ = 0. In this case, Ae4
= I. So ∇̃Xe4 = −X for X ∈ TM and

hence L + e4 is a constant vector in E
5
2, say c0. Since e4 is tangent to S4

2(1), we find
〈L, e4〉 = 0. Combining this with 〈L, L〉 = 1 gives 〈c0, c0〉 = 1. Hence c0 is a unit
spacelike vector. Without loss of generality, we may put c0 = (0, 0, 0, 0, 1). On
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the other hand, from 〈L − c0, L − c0〉 = 〈e4, e4〉 = 0 we get 〈L, c0〉 = 1. It follows
from 〈L, L〉 = 〈L, c0〉 = 1 that x2

1 + x2
2 = x2

3 + x2
4, x5 = 1, where x1, · · · , x5 are

coordinates of L in E
5
2. So, M lies in LC3

2 = {(y, 1) ∈ E
5
2 : 〈y, y〉 = 0, y ∈ E

4
2} ⊂

S4
2(1).

On the other hand, the compatibility condition of the system (3.18)−(3.20) are
given by

βy =
2

x + y
β, δx =

2

x + y
δ.

Hence there exist function c1(x) and c2(y) such that β = c1(x)(x + y)2/2,
δ = c2(y)(x + y)2/2. Then (3.18) and (3.20) become

Lxx = − 2

x + y
Lx + c1(x)(c0 − L), Lyy = − 2

x + y
Ly + c2(y)(c0 − L). (3.25)

Solving (3.25) gives

L(x, y) =
1

x + y
f (x, y) + c0, (3.26)

where f (x, y) is a vector-valued function lying in the light cone LC(c0) and satis-
fying

fxx = −c1(x) f , fyy = −c2(y) f . (3.27)

Equation (3.27) implies that

f (x, y) = u(x) ∗ z(y) + v(x) ∗ w(y), (3.28)

where u, v, z, w are curves in E
5
2 satisfying

u′′(x) + c1(x)u(x) = v′′(x) + c1(x)v(x) = z′′(y) + c2(y)z(y) =

w′′(y) + c2(y)w(y) = 0.

Hence (3.26) and (3.28) imply that

L(x, y) =
1

x + y
(u(x) ∗ z(y) + v(x) ∗ w(y)) + c0. (3.29)

By applying (3.29) and g = − 2
(x+y)2 dxdy, we have

〈u′(x) ∗ z(y) + v′(x) ∗ w(y), u(x) ∗ z′(y) + v(x) ∗ w′(y)〉 = −2.

This gives case (4).
If 〈H, H〉 is a nonzero constant. Then there exists a pseudo-orthonormal frame

{e3, e4} satisfying (2.6) such that −H = h(e1, e2) = e3 + ae4(a 6= 0). Let

h(e1, e1) = αe3 + βe4, h(e1, e2) = e3 + ae4, h(e2, e2) = γe3 + δe4, (3.30)
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for some functions α, β, γ, δ. Then

Ae3 =

(
a δ
β a

)
, Ae4

=

(
1 γ
α 1

)
. (3.31)

It follows from Lemma 2.2 and the Ricci equation that [Ae3 , Ae4
] = 0, which im-

plies that αδ = βγ. By (3.30) and Gauss equation, we have

K = 1 − 2a + 2αδ = 1 − 2a + 2βγ. (3.32)

Case (A): K 6= 1 − 2a. Then from (3.32) we have α, β, γ, δ 6= 0. It follows from
(2.7), (3.2) and (3.30) that Codazzi equation (2.4) also reduces to

e2(α) = 2w2α, e2(β) = 2w2β, e1(γ) = −2w1γ, e1(δ) = −2w1δ, (3.33)

which together with αδ = βγ shows that there exists a nonzero real number c

such that α = cβ, γ = cδ, and [β− 1
2 e1, δ−

1
2 e2] = 0. Then there exists a coordinate

system {x, y} such that

∂

∂x
= β− 1

2 e1,
∂

∂y
= δ−

1
2 e2, g = −(βδ)−

1
2 dxdy. (3.34)

Denote by ρ = (βδ)−
1
2 , then Gauss curvature in (3.32) becomes

K = 1 − 2a + 2c/ρ2, (3.35)

and the Levi-Civita connection of g still satisfies (3.9). Moreover, from (3.30),
(3.31) and (3.34) we have

h(
∂

∂x
,

∂

∂x
) = ce3 + e4, h(

∂

∂x
,

∂

∂y
) = ρ(e3 + ae4), h(

∂

∂y
,

∂

∂y
) = ce3 + e4, (3.36)

Ae3 =

(
a ρ−1

ρ−1 a

)
, Ae4

=

(
1 cρ−1

cρ−1 1

)
. (3.37)

By applying (3.9) and (3.36), we have that L : M → S4
2 ⊂ E

5
2 satisfies

Lxx = (ln ρ)xLx + ce3 + e4, Lxy = ρ(e3 + ae4 + L), Lyy = (ln ρ)yLy + ce3 + e4.
(3.38)

The compatibility condition is

(ln ρ)xy = 2cρ−1 + (1 − 2a)ρ. (3.39)

Case (A.a): ca 6= 1. Let ξ = −ce3 + e4, η = ce3 + e4, then

Dξ = Dη = 0, 〈ξ, ξ〉 = 2c, 〈η, η〉 = −2c, 〈ξ, η〉 = 0, Aξ = (1 − ca)I.

Consider the map ψ : M → E
5
2 defined by ψ(p) = L(p) + 1

1−ca ξ(p). Then

∇̃Xψ = 0 for X ∈ TM and ψ = L + 1
1−ca ξ is a constant vector, say c0 ∈ E

5
2.

So L − c0 = 1
ca−1ξ and hence

〈L − c0, L − c0〉 =
2c

(ca − 1)2
= constant. (3.40)
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Case (A.a.1): c > 0. Equation (3.40) implies that M lies in S4
2(c0, r2) with

r2 = (ca − 1)2/(2c). Since the mean curvature vector H′ of M in S4
2(c0, r2) and

the mean curvature vector H in E
5
2 are related by H = H′ − r2(L − c0), hence we

have 〈H, H〉 = 〈H′, H′〉+ r2. This gives 〈H′, H′〉 = 1 − r2 − 2a. If M is non-flat,
we obtain case (8) of Theorem 3.1.

If M is flat, it follows from (3.35) that ρ2 = 2c
2a−1 . We choose ρ = 1 and hence

c = a − 1/2 > 0, then a > 1/2. In this case, (3.36) and (3.37) become

h(
∂

∂x
,

∂

∂x
) = h(

∂

∂y
,

∂

∂y
) = (a − 1/2)e3 + e4, h(

∂

∂x
,

∂

∂y
) = e3 + ae4, (3.41)

Ae3 =

(
a 1
1 a

)
, Ae4

=

(
1 a − 1/2

a − 1/2 1

)
. (3.42)

By applying (3.41) we have that L : M → S4
2 ⊂ E

5
2 satisfies

Lxx = Lyy = (a − 1

2
)e3 + e4, Lxy = e3 + ae4 + L.

Put x = (u + v)/
√

2 and y = (u − v)/
√

2, then

Luv = 0, Luuu = −mLu, Lvvv = −nLv. (3.43)

where m = a(2a + 3), n = 2a2 − 5a + 4. Solving equation (3.43) we obtain

L = c1 cos
√

mu + c2 sin
√

mu + c3 cos
√

nv + c4 sin
√

nv + c5.

After choosing suitable initial conditions, we obtain case (10) for a > 1/2.
Case (A.a.2): c < 0. Equation (3.40) implies that M lies in H4

1(c0,−r2) ∩ S4
2(1)

with r2 = −(ca − 1)2/(2c). Since the mean curvature vector H′ of M in H4
2(c0, r2)

and the mean curvature vector H in E
5
2 are related by H = H′+ r2(L − c0), hence

we have 〈H, H〉 = 〈H′, H′〉 − r2. This gives 〈H′, H′〉 = 1 + r2 − 2a. If M is non-
flat, we obtain case (9) of Theorem 3.1.

If M is flat, similar to case (A.a.1) we also choose ρ = 1 and c = a − 1
2 < 0,

then a <
1
2 . Just like case (A.a.1), we put x = (u + v)/

√
2 and y = (u − v)/

√
2,

then

Luv = 0, Luuu = −mLu, Lvvv = −nLv, (3.44)

where m = a(2a + 3), n = 2a2 − 5a + 4.
(a) If a = 0 or a = − 3

2 , then m = 0, and n = 4 or n = 16. Solving (3.44), we
have

L = c1u2 + c2u + c3 cos
√

nv + c4 sin
√

nv + c5.

After choosing suitable initial conditions, we obtain case (11) or case (12).
(b) If − 3

2 < a < 0, solving (3.44) we have

L = c1 cosh
√
−mu + c2 sinh

√
−mu + c3 cos

√
nv + c4 sin

√
nv + c5.

After choosing suitable initial conditions, we obtain case (13).
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(c) If a < − 3
2 or 0 < a <

1
2 , solving (3.44) we have

L = c1 cos
√

mu + c2 sin
√

mu + c3 cos
√

nv + c4 sin
√

nv + c5.

After choosing suitable initial conditions, we also obtain case (10).
Case (A.b): ca = 1. It follows from (3.37) that A−ce3+e4

= 0, which implies that
−ce3 + e4 is a constant vector, say c0 ∈ E

5
2 and it is easy to check that 〈c0, c0〉 = 2c.

Case (A.b.1): c > 0. In this case, M lies in S4
2 ∩ π, where π is hyperplane

of index 2 in E
5
2. If M is non-flat, we get case (14). If M is flat, from (3.35) we

have ρ2 = 2c
2a−1 and hence ρ is constant. We choose ρ = 1, then c =

√
17−1
4 and

a =
√

17+1
4 . Then we obtain case (10) for a =

√
17+1
4 .

Case (A.b.2): c < 0. In this case, M lies in S4
2 ∩ π, where π is hyperplane of

index 1 in E
5
2. If M is non-flat, we get case (15). If M is flat, similar to case (A.b.1)

we get c = −
√

17−1
4 and a = 1−

√
17

4 . Then we obtain case (13) for a = 1−
√

17
4 .

Case (B): K = 1 − 2a. In this case, M is a Lorentz surface of constant Gauss
curvature and αδ = βγ = 0 from (3.32). We choose the metric of the surface given
by Lemma 2.1 and define e1 =

1
m ∂x, e2 =

1
m ∂y. Then from (3.30), we have

h(
∂

∂x
,

∂

∂x
) = m2(αe3 + βe4), h(

∂

∂x
,

∂

∂y
) = m2(e3 + ae4), h(

∂

∂y
,

∂

∂y
) = m2(γe3 + δe4).

(3.45)
From (3.31), we have

∇̃ ∂
∂x

e3 = −a
∂

∂x
− β

∂

∂y
, ∇̃ ∂

∂y
e3 = −δ

∂

∂x
− a

∂

∂y
,

(3.46)

∇̃ ∂
∂x

e4 = − ∂

∂x
− α

∂

∂y
, ∇̃ ∂

∂y
e4 = −γ

∂

∂x
− ∂

∂y
.

It follows from (2.9) and (3.45) that

Lxx =
2mx

m
Lx + m2(αe3 + βe4), (3.47)

Lxy = m2(e3 + ae4 + L), (3.48)

Lyy =
2my

m
Ly + m2(γe3 + δe4). (3.49)

The compatibility conditions of system (3.46) are given by

αy + α
2my

m
= 0, βy + β

2my

m
= 0, δx + δ

2mx

m
= 0, γx + γ

2mx

m
= 0. (3.50)

The compatibility condition of the system (3.47)-(3.49) is given by

(ln m)xy = (
1

2
− a)m2.

Case (B.a): K > 0, i.e. a <
1
2 . One can choose local coordinates (x, y) such that

m(x, y) =
1√

1
2 − a(x + y)

.
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Case (B.a.1): α = β = 0. Equation (3.47) becomes

Lxx = − 2

x + y
Lx.

Solving this equation and from g = − 1
( 1

2−a)(x+y)2 dxdy, we can get case (16).

Case (B.a.2): γ = δ = 0. After interchanging x and y, we get case (16) as well.

Case (B.a.3): α = γ = 0. In this case, Ae4
= I and hence L + e4 is a constant

vector in E
5
2, say c0. It is easy to check that c0 is a spacelike vector and 〈L, L〉 =

〈L, c0〉 = 1. Without loss of generality, we put c0 = (0, 0, 0, 0, 1). Hence we have
x2

1 + x2
2 = x2

3 + x2
4, x5 = 1, where x1, · · · , x5 are coordinates of L in E

5
2. So M lies

in LC3
2 = {(y, 1) ∈ E

5
2 : 〈y, y〉 = 0, y ∈ E

4
2} ⊂ S4

2(1).
On the other hand, from (3.50) we have β = c1(x)/m2, δ = c2(y)/m2 for some

functions c1(x), c2(y). Hence (3.47) and (3.49) become

Lxx = − 2

x + y
Lx + c1(x)(c0 − L), Lyy = − 2

x + y
Ly + c2(y)(c0 − L). (3.51)

Solving this equation and from g = 1
(a−1/2)(x+y)2 dxdy, we obtain case (17).

Case (B.a.4): β = δ = 0. Similar to case (B.a.3), we get case (17) as well.

Case (B.b): K < 0, i.e. a >
1
2 . In this case, one can choose local coordinates

(x, y) such that

m(x, y) =
1√

a − 1
2(x − y)

. (3.52)

Case (B.b.1): α = β = 0. Equation (3.47) becomes

Lxx = − 2

x − y
Lx.

Solving this equation and from g = − 1
(a−1/2)(x−y)2 dxdy, we have case (18).

Case (B.b.2): γ = δ = 0. After interchanging x and y, we get case (18) as well.

Case (B.b.3): α = γ = 0. similar to case (B.a.3), we conclude that M lies in
LC3

2 = {(y, 1) ∈ E
5
2 : 〈y, y〉 = 0, y ∈ E

4
2} ⊂ S4

2(1). In this case, (3.47) and (3.49)
become

Lxx = − 2

x − y
Lx + c3(x)(c0 − L), Lyy =

2

x − y
Ly + c4(y)(c0 − L).

Solving this equation and from g = − 1
(a−1/2)(x−y)2 dxdy, we obtain case (19).

Case (B.b.4): β = δ = 0. In this case, similar to case (B.2.3), we get case (19) as
well.

Conversely, it is easy to verify that each of the 19 types of Lorentz surfaces in
S4

2(1) has parallel mean curvature vector.
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4 Lorentz surfaces in H4
2(−1)

In this section, we will give the classification of Lorentz surfaces in H4
2(−1) with

parallel mean curvature vector. The classification and the proof are similar to the
ones in S4

2(1). In fact, the map φ : E
5
2 → E

5
3 : (x1, x2, x3, x4, x5) 7→ (x3, x4, x5, x1, x2)

takes S4
2(1) into H4

2(−1) and is a conformal map with factor −1. So we omit the
proof here.

Let Gb = {(x1, x2, · · · , x5) ∈ E
5
3 : x5 = x1 + b}. For any two vectors

a = (a1, . . . , a5), b = (b1, . . . , b5) in E
5
3, we put a ∗ b = (a1b1, . . . , a5b5). The fol-

lowing theorem classifies Lorentz surfaces with parallel mean curvature vector
in H4

2(−1).

Theorem 4.1. Let M be a Lorentz surface with parallel mean curvature vector in de
Sitter space-time H4

2(−1) ⊂ E
5
3, then L is congruent to a surface of the following 19

families.

1. A minimal Lorentz surface of H4
2(−1);

2. A Lorentz surface of curvature -1 with constant lightlike mean curvature vector,
lying in G0 ∩ H4

2(−1), which is defined by

L(x, y) =

(
f (x, y),

x + y

x − y
,

xy − 1

x − y
,

xy + 1

x − y
, f (x, y)

)
,

for some function f (x, y).

3. A Lorentz surface of curvature -1 defined by L = − p(y)
x−y + q(y), where p(y) is a

curve lying in the light cone LC and q(y) is a null curve satisfying
〈p′, q′〉 = 0, 〈p, q′〉 = −2, 〈p′, p′〉 = −4;

4. A Lorentz marginally trapped surface of curvature -1 in H4
2(−1) and lies in

LC3
2 = {(1, y) ∈ E

5
3 : 〈y, y〉 = 0, y ∈ E

4
2} ⊂ H4

2(−1), which is defined by

L(x, y) =
1

x − y
(u(x) ∗ z(y) + v(x) ∗ w(y)) + c0,

where c0 = (1, 0, 0, 0, 0), u′′(x)+ 2c1(x)u(x) = v′′(x)+ 2c1(x)v(x) = z′′(y)+
2c2(y)z(y) = w′′(y) + 2c2(y)w(y) = 0 and 〈u′(x) ∗ z(y) + v′(x) ∗ w(y),
u(x) ∗ z′(y) + v(x) ∗ w′(y)〉 = −2 for some functions c1(x) and c2(y).

5. a non-flat Lorentz surface which lies in H4
2(c0,−r2)∩ H4

2(−1) such that the mean
curvature vector H′ of M in H4

2(c0,−r2)∩ H4
2(−1) satisfies 〈H′, H′〉 = −1+ r2.

6. a non-flat Lorentz surface which lies in S4
3(c0, r2) ∩ H4

2(−1) such that the mean

curvature vector H′ of M in S4
3(c0, r2) ∩ H4

2(−1) satisfies 〈H′, H′〉 = −1 − r2.

7. A flat marginally trapped surface defined by

L =

(
sin 2u

2
√

2
,

cos 2u

2
√

2
, v2 +

15

8
, v2 +

13

8
,

v√
2

)
.
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8. A non-flat CMC surface lying in H4
2(c0,−r2) ∩ H4

2(−1) such that the mean cur-
vature vector H′ of M in H4

2(c0,−r2) ∩ H4
2(−1) satisfies 〈H′, H′〉 = −1 − 2a +

r2 for a nonzero real number a.

9. a non-flat CMC surface lying in S4
3(c0, r2)∩ H4

2(−1) such that the mean curvature

vector H′ of M in S4
3(c0, r2) ∩ H4

2(−1) satisfies 〈H′, H′〉 = −1 − 2a − r2 for a
nonzero real number a.

10. A flat surface defined by

L =

(
±
√

1 − 1

2m
+

1

2n
,

cos
√

mu√
2m

,
sin

√
mu√

2m
,

cos
√

nv√
2n

,
sin

√
nv√

2n

)
,

where m = 2a2 + 5a + 4, n = 2a − 3 for a ∈ (−∞,− 1
2 ) ∪ (− 1

2 , 0)∪ (3
2 , 0).

11. A flat surface defined by

L =

(
v2 +

15

8
,

cos 2u

2
√

2
,

sin 2u

2
√

2

v√
2

, v2 +
13

8

)
.

12. A flat surface defined by

L =

(
v2 +

33

16
,

cos 4u

4
√

2
,

sin 4u

4
√

2

v√
2

, v2 +
29

16

)
.

13. A flat surface defined by

L =

(
cos

√
mu√

2m
,

sin
√

mu√
2m

,
sinh

√
−nv√

−2n
,

cosh
√
−nv√

−2n
, ±
√

1

2m
− 1

2n
− 1

)
,

where m = 2a2 + 5a + 4, n = 2a − 3 for a ∈ (0, 3
2).

14. A non-flat CMC surface lying in H4
2(−1) ∩ π, where π is hyperplane of index 3

in E
5
3.

15. A non-flat CMC surface lying in H4
2(−1) ∩ π, where π is hyperplane of index 2

in E
5
3.

16. A non-flat surface defined by

L(x, y) = − 1

x + y
u(y) + v(y),

where u(y) is a curve lying in the light cone LC and v(y) is a null curve satisfying
〈u′, v′〉 = 0, 〈u′, u′〉 = − 4

1+2a and 〈u, v′〉 = 2
2a+1 for a real number a < −1/2.

17. A non-flat CMC surface lying in LC3
2 = {(1, y) ∈ E

5
3 : 〈y, y〉 = 0, y ∈ E

4
2} ⊂

H4
2(−1) defined by

L(x, y) =
1

x + y
(u(x) ∗ z(y) + v(x) ∗ w(y)) + c0,
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where c0 = (1, 0, 0, 0, 0), u, v, z, w are curves in E
4
2 satisfying u′′(x)− c1(x)u(x)

= v′′(x) − c1(x)v(x) = z′′(y) − c2(y)z(y) = w′′(y) − c2(y)w(y) = 0, and
〈u′(x) ∗ z(y)+ v′(x) ∗w(y), u(x) ∗ z′(y)+ v(x) ∗w′(y)〉 = 1

a+1/2 for functions

c1(x), c2(y) and for a real number a < −1/2.

18. A non-flat surface defined by

L(x, y) = − 1

x − y
u(y) + v(y),

where u(y) is a curve lying in the light cone LC and v(y) is a null curve satisfying
〈u′, v′〉 = 0, 〈u′, u′〉 = − 4

2a+1 and 〈u, v′〉 = − 2
2a+1 for a real number a > −1/2.

19. A non-flat CMC surface lying in LC3
2 = {(1, y) ∈ E

5
3 : 〈y, y〉 = 0, y ∈ E

4
2} ⊂

H4
2(−1) defined by

L(x, y) =
1

x − y
(u(x) ∗ z(y) + v(x) ∗ w(y)) + c0,

where c0 = (1, 0, 0, 0, 0), u, v, z, w are curves in E
5
3 satisfying u′′(x)− c1(x)u(x)

= v′′(x) − c1(x)v(x) = z′′(y) − c2(y)z(y) = w′′(y) − c2(y)w(y) = 0, and
〈u′(x) ∗ z(y) + v′(x) ∗ w(y), u(x) ∗ z′(y) + v(x) ∗ w′(y)〉 = − 2

(2a+1)
for func-

tions c1(x), c2(y) and for a real number a > −1/2.

Remark 4.2. Case (2)−(7) are marginally trapped Lorentz surfaces with parallel
mean curvature vector in H4

2(−1) ⊂ E
5
3.
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