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Abstract

In this paper we study loops, neardomains and nearfields from a categor-
ical point of view. By choosing the right kind of morphisms, we can show
that the category of neardomains is equivalent to the category of sharply 2-
transitive groups. The other categories are also shown to be equivalent with
categories whose objects are sets of permutations with suitable extra proper-
ties.

Up to now the equivalence between neardomains and sharply 2-transitive
groups was only known when both categories were equipped with the obvi-
ous isomorphisms as morphisms. We thank Hubert Kiechle for this observa-
tion [6].

1 Introduction

Loops and nearfields are structures in algebra which generalize groups and fields,
respectively. The first examples of finite proper nearfields were constructed by
L.E. Dickson in 1905. Thirty years later the finite nearfields were completely clas-
sified by H. Zassenhaus. In 1965 H. Karzel introduced neardomains (which are a
weakening of nearfields) in such a way that there is a one-to-one correspondence
with sharply 2-transitive groups (see [3]). At that time morphisms were not con-
sidered. The still unsolved problem is whether there exist proper neardomains,
i.e. neardomains which are not nearfields.
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The link between loops and regular (i.e. sharply 1-transitive) permutation sets
is of a similar but simpler kind.

The present paper describes these links in a uniform way. By considering the
right kind of morphisms we show that loops, resp. neardomains are categories
equivalent to the categories of regular permutation sets resp. sharply 2-transitive
groups. The latter equivalence nicely restricts to an equivalence between the cat-
egory of nearfields and the category of sharply 2-transitive groups with the prop-
erty that the translations form a subgroup.

In [3] the correspondence between sharply 2-transitive groups and neardo-
mains is described. We define morphisms which turn this correspondence into
an equivalence of categories. Kiechle [6] was also aware of an equivalence of
categories but with a more restricted class of morphisms, namely isomorphisms.

2 Loops and regular permutation sets

2.1 Loops

A loop is a set L, together with a binary operation (k, l) 7→ kl with identity satis-
fying the left and right loop property. This means that for every a, b ∈ L there exist
unique elements x, y ∈ L such that ax = b and ya = b.

A morphism of loops (L, .) → (L′, ∗) is a map f : L → L′ preserving the
operations. This means that f (a.b) = f (a) ∗ f (b) for all a, b ∈ L. It follows that f
maps the identity of L onto the identity of L′.

We denote by L�o�o�p� the category of all loops together with all morphisms of

loops.

2.2 Regular permutation sets

Let Ω be a set and let Sym(Ω) denote the set of all permutations of Ω. A regular
permutation set (r.p.s.) on Ω is a subset M of Sym(Ω) such that the identity
permutation 1Ω is in M and M acts regularly on Ω, i.e. ∀α, β ∈ Ω : ∃! m ∈
M : m(α) = β.

We construct a category �r	p	s whose objects are triples (M, Ω, ω), where M is

an r.p.s. on Ω and ω ∈ Ω is a base point.

A morphism of r.p.s. (M, Ω, ω) → (N, Σ, σ) is a pair ( f , Φ) such that
f : M → N and Φ : Ω → Σ are maps satisfying Φ(ω) = σ and ∀m ∈ M,
∀α ∈ Ω : Φ(m(α)) = ( f (m))(Φ(α)). The latter property can be summarized by
the following commutative diagram in which the horizontal maps are the (left)
actions of M (resp. N) on the set Ω (resp. Σ).

M × Ω

f×Φ

��

// Ω

Φ

��

N × Σ // Σ
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Composition of morphisms ( f , Φ) : (M, Ω, ω) → (N, Σ, σ) and (g, Ψ) :
(N, Σ, σ) → (P, Γ, τ) is defined by (g ◦ f , Ψ ◦ Φ). The identity 1(M,Ω,ω) is defined

as (1M, 1Ω).
One easily verifies that �r	p	s is a category.

Notice that, by regularity, a morphism ( f , Φ) : (M, Ω, ω) → (N, Σ, σ) satisfies
f (1Ω) = 1Σ.

2.3 Equivalence of the categories L�o�o�p� and �r	p	s

The one-to-one correspondence between loops and regular permutation sets is
folklore (see for instance [2]). However we think it is useful to describe an explicit
categorical equivalence.

Let (M, Ω, ω) be an object of �r	p	s. By regularity, the map µ : M → Ω :

m 7→ m(ω) is a bijection such that µ(1Ω) = ω. Now define an operation

⊗ω : M × M → M
(m, n) 7→ m ⊗ω n := µ−1((m ◦ n)(ω))

Notice that m ⊗ω n is equivalently defined by (m ⊗ω n)(ω) = (m ◦ n)(ω)
(compare [2, p. 618]).

It is easy to check that

PROPERTY 2.1. The pair (M,⊗ω) is a loop with identity 1Ω.

We can also construct a loop structure on the set Ω. Let (M, Ω, ω) be an object
of �r	p	s. We still have the bijection µ : M → Ω. We define the operation

·ω : Ω × Ω → Ω

(α, β) 7→ α ·ω β := (µ−1(α)⊗ω µ−1(β))(ω) = (µ−1(α) ◦ µ−1(β))(ω)

One easily verifies the following

PROPERTY 2.2. The pair (Ω, ·ω) is a loop with identity ω, and µ : (M,⊗ω) →
(Ω, ·ω) is a loop isomorphism.

The following property gives a useful characterization of morphisms of regu-
lar permutation sets.

PROPERTY 2.3. Let (M, Ω, ω), (N, Σ, σ) be objects of �r	p	s, f : M → N and

Φ : Ω → Σ maps with Φ(ω) = σ. Then ( f , Φ) is a morphism (M, Ω, ω) → (N, Σ, σ)
if and only if the following conditions are both satisfied.

1. ∀m ∈ M : f (m)(σ) = Φ(m(ω))

2. f : (M,⊗ω) → (N,⊗σ) is a morphism of loops.
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Proof. Let ( f , Φ) : (M, Ω, ω) → (N, Σ, σ) be a morphism, then (1) follows imme-
diately, since ∀m ∈ M : f (m)(σ) = f (m)(Φ(ω)) = Φ(m(ω)).

In order to prove (2) it suffices, by the regular action of N on Σ, to establish
that ∀m1, m2 ∈ M : ( f (m1 ⊗ω m2))(σ) = ( f (m1)⊗σ f (m2))(σ).
The left hand side equals

Φ((m1 ⊗ω m2)(ω)) = Φ((m1 ◦ m2)(ω)) = Φ(m1(m2(ω))) =

( f (m1))(Φ(m2(ω))) = ( f (m1))(( f (m2))(Φ(ω))) =

( f (m1) ◦ f (m2))(σ) = ( f (m1)⊗σ f (m2))(σ)

Conversely (1) implies that the maps f : M → N, Φ : Ω → Σ with Φ(ω) = σ
satisfy f (m)(Φ(α)) = Φ(m(α)) provided m ∈ M, and for α = ω. We have to
show that this condition holds for all α ∈ Ω. For any such α there exists a unique
m′ ∈ M such that m′(ω) = α (by the regular action of M on Ω). Then it follows
that for all m ∈ M and all α ∈ Ω we have

f (m)(Φ(α)) = f (m)(Φ(m′(ω)))
(1)
= f (m)( f (m′)(σ)) =

( f (m) ◦ f (m′))(σ) = ( f (m) ⊗σ f (m′))(σ)
(2)
= ( f (m ⊗ω m′))(σ)

(1)
=

Φ((m ⊗ω m′)(ω)) = Φ((m ◦ m′)(ω)) = Φ(m(α)).

COROLLARY 2.4. Let ( f , Φ) ∈ �r	p	s((M, Ω, ω), (N, Σ, σ)). Then Φ : (Ω, ·ω) →

(Σ, ·σ) is a loop homomorphism.

The proof easily follows from the definition of the operations ·ω and ·σ and
Properties 2.2 and 2.3.

Now let (Ω, ·) be a loop. For α ∈ Ω we define λα : Ω → Ω : γ 7→ α · γ.

PROPERTY 2.5. For a loop (Ω, ·) with identity ω we write L = {λα | α ∈ Ω}, the set
of left translations of Ω. The triple (L, Ω, ω) is an object of r.p.s..

Proof. Since (Ω, ·) is a (left) loop, L is a subset of Sym(Ω). Moreover L acts regu-
larly on Ω by the (right) loop property of Ω. Also 1Ω = λω ∈ L. Hence (L, Ω, ω)
is an object of r.p.s..

We now have a correspondence between the objects of �r	p	s and L�o�o�p� which

can be extended to an equivalence of categories.

THEOREM 2.6.

F : �r	p	s −→ L�o�o�p�

(M, Ω, ω) 7−→ (Ω, ·ω)
| |

( f , Φ) 7→ Φ

↓ ↓
(N, Σ, σ) 7−→ (Σ, ·σ)

is an equivalence of categories.
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Proof. The functorial properties of F are easily checked. We use [1, prop. 3.4.3(4)]
to show that F is an equivalence of categories.

F is faithful when for every pair of objects (M, Ω, ω), (N, Σ, σ) of �r	p	s the

induced map

F(M,Ω,ω),(N,Σ,σ) : �r	p	s((M, Ω, ω), (N, Σ, σ)) → L�o�o�p�((Ω, ·ω), (Σ, ·σ)) is injective.

Let ( f , Φ), ( f ′ , Φ
′) ∈ �r	p	s((M, Ω, ω), (N, Σ, σ)) be such that F( f , Φ) = F( f ′ , Φ

′).

Then Φ = Φ′ follows immediately.
Hence, for all (m, α) ∈ M × Ω, we have that ( f (m))(Φ(α)) = Φ(m(α)) =

Φ
′(m(α)) = ( f ′(m))(Φ′(α)). In particular, for α = ω, it follows that ν( f (m)) =

( f (m))(σ) = ( f (m))(Φ(ω)) = ( f ′(m))(Φ′(ω)) = ( f ′(m))(σ) = ν( f ′(m)) (where
ν : N → Σ : n 7→ n(σ) is the bijection analogous to µ). Hence f (m) = f ′(m) for all
m ∈ M and thus f = f ′.

F is full when all induced maps F(M,Ω,ω),(N,Σ,σ) (as above) are surjective. Let

Φ ∈ L�o�o�p�((Ω, ·ω), (Σ, ·σ)), then Φ(ω) = σ (since ω and σ are identities in the

respective loops). Define fΦ : M → N : m 7→ (ν−1 ◦ Φ ◦ µ)(m) (with µ and ν as
above). One uses Property 2.3 and the regularity of the action of N on Σ to show
that ( fΦ, Φ) ∈ �r	p	s((M, Ω, ω), (N, Σ, σ)). Clearly F( fΦ, Φ) = Φ.

We now take a loop (Ω, ·) with identity ω with its left translations as defined
above. We then know (Prop. 2.5) that (L, Ω, ω) is an object of r.p.s.. For α, β ∈ Ω

we have that (λα ⊗ω λβ)(ω) = (λα ◦ λβ)(ω) = α · (β · ω) = α · β = (α · β) · ω =
λα·β(ω). Again by regularity, it follows that λα ⊗ω λβ = λα·β. Hence F(L, Ω, ω) =

(Ω, ·ω) where α ·ω β = (µ−1(α) ◦ µ−1(β))(ω) = (λα ◦ λβ)(ω) = α · β, which
shows that (Ω, ·) = F(L, Ω, ω). So F turns out to be even strictly surjective on
objects.

3 Neardomains, nearfields and sharply 2-transitive groups

3.1 Neardomains and nearfields

A triple (F,+, .) is said to be a neardomain if

1. (F,+) is a loop with neutral element 0;

2. ∀a, b ∈ F : a + b = 0 ⇒ b + a = 0;

3. (F \ {0}, .) is a group (with neutral element 1);

4. ∀a ∈ F : 0.a = 0;

5. ∀a, b, c ∈ F : a.(b + c) = a.b + a.c;

6. ∀a, b ∈ F : ∃da,b ∈ F \ {0} : (∀x ∈ F : a + (b + x) = (a + b) + da,b.x).

Notice that (F,+, .) is a nearfield if and only if all da,b are 1. In that case (F,+) is
a group. Also notice that 1 and 5 imply that ∀a ∈ F : a.0 = 0.

THEOREM 3.1 (see [3], [4] or [5]). A finite neardomain is a nearfield.
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It is still an open problem whether there exists a (necessarily infinite) neardo-
main which is not a nearfield.

We define the category �n�-D�o�m� of neardomains where objects are neardomains
and morphisms are maps preserving both operations.

PROPERTY 3.2. Neardomain morphisms are injective.

Proof. Let f : (F,+, .) −→ (F′,+′, .′) be a morphism of neardomains. Suppose
f (x) = f (y) for some x, y ∈ F. Since (F,+, .) is a neardomain we have by condi-
tions 1, 2 a unique additive inverse −y of y. Then,

f (x + (−y)) = f (x) +′ f (−y) = f (y) +′ f (−y) = f (y + (−y)) = f (0) = 0′.

If x + (−y) 6= 0 this element has an inverse z in (F \ {0}, .). Hence we get

1′ = f (1) = f ((x + (−y)).z) = f (x + (−y)).′ f (z) = 0′.′ f (z) = 0′,

a contradiction.

THEOREM 3.3. Let (F,+, .) be a neardomain and let

T2(F) = {τa,b : F → F : x 7→ a + bx | a ∈ F, b ∈ F \ {0}}

Then (T2(F), ◦) is a group whose action on F is sharply 2-transitive, i.e. for any two
ordered pairs (α1, α2), (β1, β2) of points of F with α1 6= α2, β1 6= β2 there exists a
unique element τa,b ∈ T2(F) such that τa,b(α1) = β1 and τa,b(α2) = β2.

Proof. See [3, (5.1)], [4, (6.1)] or [5, (7.8)].

3.2 Sharply 2-transitive groups and involutions

Let G be a sharply 2-transitive permutation group on a set Ω with #Ω ≥ 2.
We denote by J the set of involutions in G, i.e.

J = {g ∈ G | g2 = 1Ω 6= g}

One can quickly see that J is never empty. Indeed, as #Ω ≥ 2, we can take
α 6= β in Ω and find a (unique) g ∈ G with g(α) = β and g(β) = α. Such
g must have order 2 (since g2 fixes both α and β, implying g2 = 1Ω, by sharp
2-transitivity).

PROPERTY 3.4. J satisfies exactly one of the following properties:

1. every j ∈ J has a unique fixpoint;

2. all j ∈ J are fixpoint-free.

In the latter case we say that G has characteristic 2 and write char G = 2. In the first
case we put char G 6= 2.



A categorical approach to loops, neardomains and nearfields 853

Proof. For a detailed proof, we refer to [4, p.12], where the case char G = 2, resp.
char G 6= 2 is referred to as G of type 0, resp. of type 1. (The type refers to the
number of fixpoints of an involution in G.) The main idea behind the proof is that
sharp 2-transitivity implies that a nontrivial element of G cannot have 2 (or more)
fixed points. Moreover all elements of J are conjugate in G, hence they have the
same number of fixpoints.

The reason for this notation and for using the word characteristic will be clar-
ified when we establish the correspondence between sharply 2-transitive groups
and neardomains (see Property 3.6).

In the case char G 6= 2 we write ν for the unique involution fixing an arbitrarily
chosen base point ω0 ∈ Ω.

The following subset of G plays an important role. We define A ⊆ G as fol-
lows

A =

{

J ◦ ν if char G 6= 2

J ∪ {1Ω} if char G = 2
(1)

PROPERTY 3.5. The triple (A, Ω, ω0) is a regular permutation set with basepoint
on Ω.

Proof. See [3, (5.3)] or [4, (3.3)].

The category of sharply 2-transitive groups will be denoted by 	s2t-G
p�. Its

objects are quadruples (G, Ω, ω0, ω1) where G is a permutation group which op-
erates sharply 2-transitively on the set Ω (with #Ω ≥ 2), with two different base
points ω0 and ω1 of Ω. Morphisms will be defined after Property 3.6.

Let (G, Ω, ω0, ω1) be an object in 	s2t-G
p�. On Ω we define an addition and a

multiplication as follows. For α, β ∈ Ω we define α +0 β to be a(β), where a ∈ A
is unique such that a(ω0) = α.

Since the stabilizer Gω0 is regular on Ω \ {ω0} we can also define α ·1 β as g(β)
where g ∈ Gω0 is unique such that g(ω1) = α. We also put α ·1 β = ω0 when
α = ω0 or β = ω0.

PROPERTY 3.6. 1. The triple F = (Ω,+0, ·1) is a neardomain.

2. char G = 2 ⇔ char F = 2, i.e. 1 + 1 = 0 in F (1 denotes the multiplicative
identity of the neardomain F).

Proof. 1. See [3, (5.2)] or [4, (6.2)].

2. See [5, (7.10)].

We now define the morphisms in 	s2t-G
p� to be pairs of maps ( f , Φ) :

(G, Ω, ω0, ω1) → (H, Σ, σ0, σ1) where either both G and H have characteristic 2
or both have characteristic different from 2 and where f : G → H is a group ho-
momorphism, Φ : Ω → Σ an injective map with Φ(ω0) = σ0 and Φ(ω1) = σ1,
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and such that the following diagram commutes.

G × Ω

f×Φ

��

// Ω

Φ

��

H × Σ // Σ

(2)

In this diagram the horizontal maps λ and µ are the left action maps. (Do not
confuse with the map µ : M → Ω introduced in 2.3.)

In the case either char G = 2 and char H 6= 2 or char G 6= 2 and char H = 2, we

put 	s2t-G
p�((G, Ω, ω0, ω1), (H, Σ, σ0, σ1)) = ∅ (see the second remark just below).

Remark 3.7. 1. The injectivity of Φ implies the injectivity of f since 1Σ = f (g)
for some g ∈ G implies that ∀ω ∈ Ω we have Φ(g(ω)) = f (g)(Φ(ω)) =
Φ(ω). Hence ∀ω ∈ Ω : g(ω) = ω, proving g = 1Ω.

2. The reason for not allowing any morphisms in the case where G and H
have different characteristics is the following. If ( f , Φ) is a morphism from
(G, Ω, ω0, ω1) to (H, Σ, σ0, σ1) with either char G = 2 and char H 6= 2 or
char G 6= 2 and char H = 2, the map Φ between the associated neardomains
(Ω,+0, ·1) and (Σ,+0′ , ·1′) cannot be a morphism of neardomains. Indeed,
the first case char G = 2 6= char H implies (by Property 3.6.2.) that the
multiplicative identities 1 of (Ω,+0, ·1) and 1′ of (Σ,+0′ , ·1′) satisfy 1+ 1 = 0
and 1′ + 1′ 6= 0′, which conflicts with Φ : (Ω,+0, ·1) → (Σ,+0′ , ·1′) being a
morphism of neardomains, as can be seen by 0′ 6= 1′ + 1′ = Φ(1) +′ Φ(1) =
Φ(1 + 1) = Φ(0) = 0′. Similarly the second case char G 6= 2 = char H leads
to the contradiction 0′ = 1′ +′ 1′ = Φ(1) +′ Φ(1) = Φ(1 + 1) 6= Φ(0) = 0′,
where we used the injectivity of Φ.

Our elimination of “bad” morphisms in 	s2t-G
p� enables us to show (in Prop-

erty 3.9) that the corresponding Φ is a morphism of neardomains.

LEMMA 3.8. For a morphism ( f , Φ) : (G, Ω, ω0, ω1) → (H, Σ, σ0, σ1) the following
hold.

1. f (J) ⊆ K (where K denotes the set of involutions in H);

2. f (A) ⊆ B where A ⊆ G is defined in (1) above Property 3.5 and B ⊆ H is defined
by

B =

{

K ◦ f (ν) if char H 6= 2

K ∪ {1Σ} if char H = 2

( f (ν) is the unique element of K fixing the base point σ0 = Φ(ω0))

Proof. 1. Let g ∈ J, then f (g) satisfies ( f (g))2 = f (g2) = f (1Ω) = 1Σ 6= f (g),
since f (1Ω) = f (g) would imply (using the injectivity of f ) that g = 1Ω,
contradicting the fact that g ∈ J. Hence f (J) ⊆ K.

2. By the previous remark 2., the existence of the morphism ( f , Φ) implies
that either char G = char H 6= 2 or char G = char H = 2. In the first case it
follows that f (A) = f (J ◦ ν) = f (J) ◦ f (ν) ⊆ K ◦ f (ν) = B. In the second
case we have f (A) = f (J ∪ {1Ω}) = f (J) ∪ { f (1Ω)} ⊆ K ∪ {1Σ} = B.
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PROPERTY 3.9. For a morphism ( f , Φ) : (G, Ω, ω0, ω1) → (H, Σ, σ0, σ1) the map
Φ : (Ω,+0, ·1) → (Σ,+0′ , ·1′) is a morphism of neardomains.

Proof. Consider the diagram (2) above involving the morphism ( f , Φ) from
(G, Ω, ω0, ω1) to (H, Σ, σ0, σ1). For α, β ∈ Ω, α +0 β = a(β) ∈ Ω where a ∈ A ⊆ G
is unique such that a(ω0) = α. Now Φ(α +0 β) = Φ(a(β)) = Φ(λ(a, β)) =
(µ ◦ ( f × Φ))(a, β) = µ( f (a), Φ(β)) = f (a)(Φ(β)). On the other hand, Φ(α) +0′

Φ(β) = b(Φ(β)) where b ∈ B ⊆ H is unique such that b(σ0) = Φ(α).
Since f (A) ⊆ B we also have f (a) ∈ B and moreover ( f (a))(σ0) = µ( f (a),

Φ(ω0)) = Φ(λ(a, ω0)) = Φ(a(ω0)) = Φ(α). Since B acts regularly on Σ it follows
that f (a) = b. This implies that Φ(α +0 β) = f (a)(Φ(β)) = b(Φ(β)) = Φ(α) +0′

Φ(β).
We recall that, for α, β ∈ Ω,

α ·1 β =

{

g(β) when α ∈ Ω \ {ω0} with g ∈ Gω0 unique such that g(ω1) = α
ω0 when α = ω0 or β = ω0

When α = ω0 we have immediately

Φ(α) ·1′ Φ(β) = σ0 ·1′ Φ(β) = σ0 = Φ(ω0) = Φ(ω0 ·1 β).

When α 6= ω0, we have

Φ(α ·1 β) = Φ(g(β)) = Φ(λ(g, β)) = (µ ◦ ( f × Φ))(g, β) = µ( f (g), Φ(β)) =

f (g)(Φ(β)) (with g ∈ Gω0 unique such that g(ω1) = α).

On the other hand, Φ(α) ·1′ Φ(β) = h(Φ(β)) with h ∈ Hσ0 unique such that
h(σ1) = Φ(α). Note that, by the injectivity of Φ we have Φ(α) 6= Φ(ω0) = σ0. We
must have h = f (g) since

f (g)(σ1) = µ( f (g), Φ(ω1)) = (µ ◦ ( f × Φ))(g, ω1) =

(Φ ◦ λ)(g, ω1) = Φ(g(ω1)) = Φ(α) = h(σ1) and f (g), h ∈ Hσ0 .

Hence

f (g)(Φ(β)) = h(Φ(β))

and Φ is a neardomain homomorphism.

For any neardomain (F,+, ·) we can construct the object (T2(F), F, 0, 1) in

	s2t-G
p�. It is clear that the stabilizer of 0 in T2(F) consists of the elements τ0,δ

with δ ∈ F \ {0}.

LEMMA 3.10. When G = T2(F) we have A = {τγ,1 | γ ∈ F}.

Proof. See [4, (6.5)].
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4 Equivalence of the categories 	s2t-G
p� and �n�-D�o�m�

THEOREM 4.1. The functor

K : 	s2t-G
p� −→ �n�-D�o�m�

(G, Ω, ω0, ω1) 7−→ (Ω,+0, ·1)
| |

( f , Φ) 7→ Φ

↓ ↓
(H, Σ, σ0, σ1) 7−→ (Σ,+0, ·1)

is an equivalence of categories. Here f : G → H, Φ : Ω → Σ with Φ(ω0) = σ0 and
Φ(ω1) = σ1 are defined as in section 3.2. The neardomain operations +0 : Ω × Ω → Ω

and ·1 : Ω \ {ω0} × Ω \ {ω0} → Ω \ {ω0} are defined as in the previous section.

Proof. The shortest proof should consist in proving that K is full and faithful
and essentially surjective on objects ([1, prop.3.4.3 (4)]). However we prefer to

show that there exists a functor L : �n�-D�o�m� → 	s2t-G
p�, which is of interest in its

own right, and two natural isomorphisms 1
�n�-D�o�m�

∼= K ◦ L and L ◦ K ∼= 1
	s2t-G
p�

([1, prop. 3.4.3 (3)]). The proof of functoriality of K is left as an exercise for

the reader. The definition of L : �n�-D�o�m� → 	s2t-G
p� is as follows. A neardomain

(F,+, .) is sent to L(F) = (T2(F), F, 0, 1) where (T2(F), ◦), as defined in Theo-
rem 3.3, is a sharply 2-transitive group acting on F and 0, 1 are the identities of
the loop (F,+) and the group (F \ {0}, .) respectively. A morphism Φ : (F,+, .) →
(F′ ,+′, .′) of neardomains is sent to L(Φ) = ( fΦ, Φ) : (T2(F), F, 0, 1) → (T2(F

′), F′,
0′, 1′) where fΦ : (T2(F), ◦) → (T2(F

′), ◦) maps τa,b to τΦ(a),Φ(b). Since Φ(1) = 1′

it immediately follows, using Lemma 3.10, that fΦ(A) = { fΦ(τa,1) | a ∈ F} =
{τΦ(a),1′ | a ∈ F} ⊆ {τa′,1′ | a′ ∈ F′} = A′. Moreover fΦ is a group homomor-

phism since, on the one hand, for a, k ∈ F and b, l ∈ F \ {0} we have

fΦ(τa,b ◦ τk,l) = fΦ(τa+bk,da,bkbl) = τΦ(a+bk),Φ(da,bkbl) = τΦ(a)+Φ(b)Φ(k),Φ(da,bk)Φ(b)Φ(l)

while, on the other hand,

fΦ(τa,b) ◦ fΦ(τk,l) = τΦ(a),Φ(b) ◦ τΦ(k),Φ(l) = τΦ(a)+Φ(b)Φ(k),d′
Φ(a),Φ(b)Φ(k)

Φ(b)Φ(l).

Finally the missing link Φ(da,bk) = d′
Φ(a),Φ(b)Φ(k) is provided by applying Φ to the

identity a + (bk + x) = (a + bk) + da,bkx, which follows from axiom 6 for F, and
expanding Φ(a) + (Φ(b)Φ(k) + Φ(x)), again using rule 6 for F′.

Then it follows that L(Φ) is a morphism in 	s2t-G
p� by easily verifying that for

all a ∈ F, b ∈ F \ {0}, ω ∈ F we have Φ(τa,b(ω)) = ( fΦ(τa,b))(Φ(ω)).
The functoriality of L, i.e. L(1F) = 1F for every neardomain F and L(Φ′ ◦Φ) =

L(Φ′) ◦ L(Φ) for every composable pair Φ : F → F′, Φ′ : F′ → F′′ of morphisms
of neardomains, is easily verified.
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In order to prove K ◦ L = 1
�n�-D�o�m�

it suffices to check that +0, ·1 (resp. +{0′},

·{1′}) coincide with +, · (resp. +′, ·′).
We first look at the multiplication. Take any α, β in F. By definition α ·1 β

equals τ0,α(β) since T2(F)0 = {τ0,δ | δ ∈ F \ {0}} and τ0,δ(1) = α ⇔ δ = α. Hence
we get α ·1 β = α · β.

For the addition we consider α, β ∈ F. By Lemma 3.10, the unique element in
A mapping 0 to α must be equal to τα,1. Therefore we get α+0 β = τα,1(β) = α+ β.

Secondly, we have to find a natural isomorphism γ : L ◦ K ⇒ 1
	s2t-G
p�

. We de-

fine each component γ(G,Ω,ω0,ω1)
: (L ◦ K)(G, Ω, ω0, ω1) = L(Ω,+0, ·1) =

(T2(Ω), Ω, ω0, ω1) → (G, Ω, ω0, ω1) as follows.
For each τα,β ∈ T2(Ω) there exists, by the sharp 2-transitivity of G on Ω a

unique element g ∈ G, denoted by gα,β such that gα,β(ω0) = α = τα,β(ω0)
and gα,β(ω1) = α +0 β ·1 ω1 = τα,β(ω1). This correspondence defines a bijec-
tive map k : T2(Ω) → G : τα,β 7→ gα,β and one verifies easily that k : (T2(Ω), ◦) →
(G, ◦) is a group homomorphism (using also the sharp 2-transitivity of T2(Ω)
on Ω). Finally we define γ(G,Ω,ω0,ω1)

: (T2(Ω), Ω, ω0, ω1) → (G, Ω, ω0, ω1) by

γ(G,Ω,ω0,ω1)
(τα,β, ω) = (k(τα,β), ω) = (gα,β, ω), which is an isomorphism in 	s2t-G
p�.

The naturality of γ amounts to the commutativity of each square

(T2(Ω), Ω, ω0, ω1)

( fΦ,Φ)
��

γ(G,Ω,ω0,ω1)
// (G, Ω, ω0, ω1)

( f ,Φ)
��

(T2(Σ), Σ, σ0, σ1)
γ(H,Σ,σ0,σ1)

// (H, Σ, σ0, σ1)

with f : G → H and Φ : Ω → Σ as in 3.2 and fΦ : T2(Ω) → T2(Σ) :
τα,β 7→ τΦ(α),Φ(β).

On the one hand we have, for each (τα,β, ω) ∈ T2(Ω)× Ω,

(( f , Φ) ◦ γ(G,Ω,ω0,ω1)
)(τα,β, ω) = ( f , Φ)(k(τα,β), ω) =

( f , Φ)(gα,β , ω) = ( f (gα,β), Φ(ω)) ∈ H × Σ

On the other hand,

(γ(H,Σ,σ0,σ1)
◦ ( fΦ, Φ))(τα,β , ω) = γ(H,Σ,σ0,σ1)

( fΦ(τα,β), Φ(ω)) =

γ(H,Σ,σ0,σ1)
(τΦ(α),Φ(β), Φ(ω)) = (hΦ(α),Φ(β), Φ(ω)) ∈ H × Σ.

Finally f (gα,β) = hΦ(α),Φ(β) since ( f (gα,β))(σ0) = ( f (gα,β))(Φ(ω0)) =

Φ(α) = hΦ(α),Φ(β)(σ0) and, similarly,

( f (gα,β))(σ1) = (µ ◦ ( f × Φ))(gα,β , ω1) = Φ(gα,β(ω1)) =

Φ(α +0 β ·1 ω1) = Φ(α +0 β) = Φ(α) +0′ Φ(β) =

Φ(α) +0′ Φ(β) ·1′ σ1 = τΦ(α),Φ(β)(σ1) = hΦ(α),Φ(β)(σ1).

Hence, again by sharp 2-transitivity, f (gα,β) = hΦ(α),Φ(β).
Hence γ : L ◦ K ⇒ 1

	s2t-G
p�

is a natural transformation.
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Since a full and faithful functor reflects isomorphisms we immediately get

PROPERTY 4.2. Let (G, F) and (G′, F′) be sharply 2-transitive permutation groups.
Then (G, F) and (G′, F′) are isomorphic as permutation groups if and only if the associ-

ated neardomains (F,+, .) and (F′ ,+′, .′) are isomorphic in �n�-D�o�m�.

(For a noncategorical proof, see [4, (6.3)].)
The equivalence obtained in Theorem 4.1 can be restricted to interesting sub-

categories of 	s2t-G
p� and �n�-D�o�m� respectively, which sheds new light on the pos-

sible difference between neardomains and nearfields.

THEOREM 4.3. Let 	s2t-G
p�

A
be the full subcategory of 	s2t-G
p� on objects (G, Ω, ω0,

ω1) in which the subset A (as defined in (1)) is a subgroup of G.
Then the functor K restricts (and corestricts) to an equivalence

KA : 	s2t-G
p�

A
−→ �n�-F�l�d�,

where �n�-F�l�d� denotes the full subcategory of �n�-D�o�m� with nearfields as objects.

Proof. In Theorem (7.1) of [3] it is shown that, for a sharply 2-transitive group
on a set Ω, the associated neardomain is a nearfield if and only if J2 = {gh |
g, h ∈ J} (with J the set of involutions in G) is a subgroup of G. In connection
with Theorem (3.7) of [3] it follows that J2 is a subgroup of G if and only if A is a
subgroup of G.

Thus KA : 	s2t-G
p�

A
−→ �n�-F�l�d� is a functor into the category of nearfields.

On the other hand, the functor L : �n�-D�o�m� → 	s2t-G
p� restricts (and corestricts)

to a functor LA : �n�-F�l�d� → 	s2t-G
p�

A
. It suffices to notice that when (F,+, .) is a

nearfield, (F,+) and (F \ {0}, .) are groups. Hence (A, ◦) = ({τγ,1 | γ ∈ F}, ◦)
is a group since, for each α, β, x ∈ F we have (τα,1 ◦ τβ,1)(x) = τα,1(β + x) =
α + (β + x) = (α + β) + x = τα+β,1(x), which shows that τα,1 ◦ τβ,1 = τα+β,1.

Similarly τ−1
α,1 = τ−α,1.

Finally one verifies that KA ◦ LA = 1
�n�-F�l�d�

(as in the proof of Theorem 4.1)
and that the natural transformation γA : LA ◦ KA ⇒ 1

	s2t-G
p�

A

with components

γ(G,Ω,ω0,ω1)
as defined in the proof of Theorem 4.1, is a natural isomorphism.
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