Normal families of holomorphic functions and
multiple values™

Lijuan Zhao Xiangzhong Wu

Abstract

Let F be a family of holomorphic functions defined in D C C, and let
k,m,n, p be four positive integers with H#H + pTH < 1. Let ¢(# 0,00)
be a meromorphic function in D and which has zeros only of multiplicities
at most p. Suppose that, for every function f € F, (i) f has zeros only of
multiplicities at least n1z; (ii) all zeros of f(X) — ¢(z) have multiplicities at least
n; (iii) all poles of  have multiplicities at most k, and (iv) ¢(z) and f(z) have
no common zeros, then F is normal in D.

1 Introduction

In this paper, we shall use the standard notations of value distribution theory,
which can be found in ([6],[13],[17], etc.). We denote by S(r, f) any function sat-
isfying S(r, f) = o{T(r,f)} as r — oo, possibly outside a set with finite linear
measure.

Let D be a domain in C, and F be a family of meromorphic functions defined
on D. F is said to be normal on D, in the sense of Montel, if for any sequence
fn € F there exists a subsequence fy;, such that f,; converges spherically locally
uniformly on D, to a meromorphic function or oo (see [6],[13],[17]).

One of the most celebrated results in the theory of normal families is the fol-
lowing Gu’s normality criterion (see [5], the holomorphic case is due to Miranda
[9]), which is a conjecture of Hayman [7].
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Theorem A. Let F be a family of meromorphic functions in a domain D, and let k be a
positive integer. If for every function f € F, f # 0, f&) = 1, then F is normal on D.

This result has undergone various extensions(see [1], [2], [10], [11], [14], [15],
etc.). Yang and Zhang proved that the conditions f # 0and f*) # 1 are all can be
weakened in the holomorphic case. In fact, they proved the following result(see

[17]).

Theorem B. Let F be a family of holomorphic functions defined in D, and let k, m,n be
three positive integers. If for every function f € F, f has zeros only of multiplicities at
least m, f%) — 1 has zeros only of multiplicities at least n and km—l + % < 1, then F is
normal in D.

A natural problem arises: what can we say if we replace the constant 1 by a
holomorphic function (# 0) in Theorem B? In this paper, we prove the follow-
ing result.

Theorem 1. Let F be a family of holomorphic functions defined in D C C, and let
k, m,n, p be four positive integers with ktﬂﬂ + pTH < 1. Let (3 0) be a holomorphic
function in D and which has zeros only of multiplicities at most p. Suppose that, for
every function f € F,

(i) f has zeros only of multiplicities at least m in D;

(ii) f%) — (2) has zeros only of multiplicities at least n in D; and

(iii) ¥(z) and f(z) have no common zeros in D,

then F is normal in D.

In fact, we prove the following more general result.

Theorem 2. Let F be a family of holomorphic functions defined in D C C,and k,m,n, p
be four positive integers with H%H + pTH < 1. Let ¢(# 0), ag, ay, ..., ax_1 be holomor-
phic functions in D, where ¥(z) has zeros only of multiplicities at most p. Suppose that,
for every function f € F,

(i) f has zeros only of multiplicities at least m in D;

(ii) fO(2) + a1 (2) f* D (2) + ... + a1(2) f'(z) + a9 (2) f (z) — ¥(z) has zeros only of
multiplicities at least n in D; and

(iii) ¥ (z) and f(z) have no common zeros in D,

then F is normal in D.

Furthermore, it is natural to ask: whether or not the above result holds if we
extend ¢(z) to the meromorphic case? We first prove the following result.

Theorem 3. Let F be a family of holomorphic functions defined in D C C, let (5
0, # o0) be a meromorphic function in D, and let k, m,n be three positive integers with
k%l + 1 < 1. If, for every function f € F,

(i) f has zeros only of multiplicities at least m in D;

(ii) all zeros of f©) — (z) have multiplicities at least n in D; and

(iii) all poles of Y have multiplicities at most k in D,

then F is normal in D.
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Since normality is a local property, combining Theorem 1 and Theorem 3, we
obtain the following theorem.

Theorem 4. Let F be a family of holomorphic functions defined in D C C, and let
k,m, n, p be four positive integers with H#H + pTH < 1. Let ¢(# 0, 00) be a meromor-
phic function in D and which has zeros only of multiplicities at most p. Suppose that, for
every function f € F,

(i) f has zeros only of multiplicities at least m in D;

(ii) all zeros of f*) — p(z) have multiplicities at least n in D;

(iii) all poles of { have multiplicities at most k in D; and

(iv) ¥(z) and f(z) have no common zeros in D,

then F is normal in D.

2 Somelemmas

The well-known Zalcman’s lemma is a very important tool in the study of nor-
mal families. It has also undergone various extensions and improvements. The
following is one-to-date local version, which is due to Pang and Zalcman( see

[12]).

Lemma 1. Let k be a positive integer and let F be a family of holomorphic function in a
domain D, such that each function f € F has zeros only of multiplicities at least k, and
suppose that there exists A > 1 such that |fX) (z)| < A whenever f(z) =0, f € F. If
F is not normal at zy € D, then for each a, 0 < « < k, there exist a sequence of points
zn € D, zy — 20, a sequence of positive numbers p, — 0, and a sequence of functions
fn € F such that

gn(8) = % — 2(&)

locally uniformly with respect to the spherical metric, where g(&) is a nonconstant holo-
morphic function on C, all of whose zeros have multiplicity at least k, such that ¢* (&) <
¢*(0) = kA + 1. Moreover, ¢(¢) has order at most 1.

Here, as usual, ¢*(&) = |¢’(€)]/(1 + |g(&)|?) is the spherical derivative.

Lemma 2. Let F be a family of holomorphic functions defined in D C C, and k,m,n, p
be four positive integers. Let b(z)(s% 0), ag, a1, ...,ax_1 be holomorphic functions in
D. Suppose that, for every function f € F, f has zeros only of multiplicities at least
m, fO(2) + ar_1(2) f*V(2) + ... + a1(2) f'(z) + ao(2) f(z) — b(z) has zeros only of
multiplicities at least n and k%l + % < 1, then F is normal in D.

Proof. Without loss of generality, we may assume D = A = {z : |z| < 1}. Sup-
pose that F is not normal at zg € D. By Lemma 1, there exist a sequence of points
zn — zp, a sequence of positive numbers p, — 0, and a sequence of functions

fn € F such that

gn(g) = L) s g(g)
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locally uniformly with respect to the spherical metric, where g(¢) is a nonconstant
holomorphic function on C, all of whose zeros have multiplicity at least m. we
have

k—1 , ,
@) + Y 05 ai(zn + 0a8)g (8) — b(zn + puf)
i=0

k—1 .
= fr(zk) (zn + pnC) + Z a;i(zn + Png)frgl)(zn + 0n8) — b(zn + pud)
=0

Noting that a;(z, + px¢) gﬁ,i) (¢) is locally bounded on C since a;(z, + pnC) gﬁ,i) ¢) —
a;(z0)g" (Z), on every compact subset of C, we have

k=1 .
e @ + ¥ 08 ai(za + pn)g () = blzn + pn8) = §0(E) —b(z0)  (21)
i=0

Since fr(zk) (zn + pnl) + ax_1(zn + Pn‘:)frgk_l) (zn +pn€) + ..+ a1(zn + Png) fr (20 +
0nC) + ao(zn + pn€) fu(zn + pnC) — b(zn + puC) has zeros only of multiplicities at
least 71, from (2.1), Hurwitz’s theorem yields that g¢(*) (&) — b(z) has zeros only
of multiplicities at least n, by Milloux’s inequality and Nevanlinna’s first funda-
mental theorem, we have

T8) < N8 N, )4 N gros) = NG, i) +50,9)
— — 1
< (k+1)N(r,=) + N(r, R b(zo)) +5(r,9)
k+1 1 1
< TN(r, §) + —N(r, e b(zo)) +S(r, Q)
< 00,9 + - (T(rg) + KN(r,5)) +5(r,)
< (L T() +5(rg)

In above, we have used the fact that ¢(&) is entire function in both the second and
last inequalities. This is contradicts the fact that g(¢) is a nonconstant holomor-
phic function on C and k%l + % < 1. Lemma 2 is proved. n

Lemma 3. Let F = {f,} be a family of holomorphic functions defined in D C C,
and let k,m,n be three positive integers with k%l + % < 1. Let ¢u(z) be a sequence of
holomorphic functions on D such that ¢, — ¢ locally uniformly on D, where ¢(z)(# 0)

is a holomorphic function on D. If all zeros of f, have multiplicities at least m, f,gk) (z) —
¢n(z) has zeros only of multiplicities at least n, then F is normal in D.

Proof. We omit the proof since it can be carried out in the line of prove of Lemma 2.
n
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3 Proof of Theorem 2

Proof. Since normality is a local property, without loss of generality, we may as-
sume D = A = {z:|z| < 1},and (z) = z'¢(z)(z € A), where [ is a non-negative
integer with! < p, ¢(0) = 1,¢9(z) #0on A’ = {z:0 < |z| < 1}.If] = 0, then by
lemma 2 we know that Theorem 2 is valid. If | is a positive integer with [ < p,
also by lemma 2, we only need to prove that F is normal at z = 0. Consider the

family G = {g(z) = 1/; Z : f € F,z € A}. Since ¢(z) and f(z) have no common

zeros for each f € F, we get g(0) = oo for each g € G. we first prove that G is
normal in A. Suppose, on the contrary, that G is not normal at zy € A. By lemma
1, there exist a sequence of functions g, € G, a sequence of complex numbers
zn — zp and a sequence of positive numbers p,, — 0, such that

n(Zn+pn n(2n+pn

Gn(g) =+ : Pﬁp 2= PZIIE(ZH‘:)PEC)) - G((f)
converges spherically uniformly on compact subsets of C, where G(¢) is a non-
constant meromorphic function on C, and all of whose zeros have multiplicity at
least m. We distinguish two cases:
Casel. z,/py — oo. Since Gy (—zn/pn) = gn (0)/p],‘,, then the pole of G, corre-
sponding to that of g, at 0 drifts off to infinity , G(¢) has no poles.
By a simple calculation, for 0 < i < k, we have

, (i) i : i) ()
(i) n (2) i— ] PV (z) _
& =) ¥< )g” RETeN

£(2) <1) (PN S I €)
— . p z A;j (3.1)
V) E[ j )o@ LAy
where Aj; = l(l—l)...(l—j+t—|—1)<{;) if | > j, Ajy = 0ifl < j, fort =
0,1,..,j—Tand Aj; = 1. Thus, from (3.1) we have

oG @) = g\ (zn + pud)

fr(z (Zn+Pn§ : () ]
¥(zn + n€) ]; gn (zn + pnd)

J 1 go(t)(zn + pnQ)
A; :
t—zo ]t (zn +0u8) ™t @(zn + pnd) |
£z + pud) Z ( )gn ”(zn&pné)
l/)(Zn +Pn§ j=1 ‘011

] 1 b9V (24 + puf)
Al |
t—zo "zn/pn + 3 @zn + pa) |

On the other hand, we have
lim —
=0 (zy /P + ¢)
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and

J ()
lim ¢ (20 +pnb) _
n—00 qo(zn + Png)

for t > 1. Noting that gﬁ,i_j) (zn + pnC)/ p{, is locally bounded on C since
gn(zn + pn&)/pk — G(&). Therefore, on every compact subset of C, we have

fr(zk) (zn + Pn€) (k)
W tpad) O )

and

fn (zn + png)
¥(zn + Pnf)

fori =0,1,...,k— 1, and thus

— 0,

frgk) (zn + nl) + Zi':& a;(zn + Pn‘:)frgi) (zn + pnG) — ¥(zn + Pnd)
PY(zn + pul)

since ag, a1, ..., ak_1 are analytic in D

Noting that f,g (zn +pul) + 1 0 i (zn +Pn(:)fn (zn +png) — ¥(zn + pnl) has

zeros only of multiplicity at least n, and ¢(z,, + p»¢) has zeros only at { = — ;—Z —

c0. Therefore, we have G¥) (&) — 1 has zeros only of multiplicity at least 1. Next
we can arrive at a contradiction by the same argument as in the latter part of
proof of Lemma 2 since k%l + % < H#H + pTH <1

Case2. z,,/py — a, a finite complex number. Then

gn(lg;lng) _ gn(Zn +Pn‘£i—zn/Pn)) _ Gn({f—zn/Pn) — G(f—a) = G(‘:)

spherically uniformly on compact subsets of C. Clearly, G(¢) has zeros only of
multiplicity at least m, and G(¢) has a pole only at ¢ = 0. We claim that G(¢)

has a pole only at { = 0 of multiplicity I. Since g"(‘o ) — Sulonl) . _fulpnl)

Pn IP(Pné)Pﬁ - CI(P(Png)pﬁH,
fn(&) and ¢(¢) don’t have common zeros and p,, — 0, thus there existr > 0(< 1)
o

such that f,(p,¢) don’t have zeros in A, when n is large enough. Thus aond) is

holomorphic in A, and ¢ = 0 is the only zero of ( ") of mult1p11c1ty I. On the

other hand, since G(¢&) has a pole only at & = 0, we have has a zero only at

G(C)
¢ = 0. Therefore, there exist g > 0 such that | | > g9 when |¢| = 7/, where

o<r <r, and | | < gowhennis large enough By Rouche’s theorem

n Png) G

we obtain == ( 3 has a zero only at ¢ = 0 of multiplicity I. Thus we have proved
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the claim.
Set
Hy (@) = J2enl) (32)
On
Then

Hy(S) = ¢('0”‘:) fn(Pn‘:) lp(Pn‘:) gn(Pn‘:).

ol pky(ond) o ok

Noting that % — &, thus H, (&) — & G(&) = H(&) uniformly on compact

subsets of C. Since G(¢) has a pole only at & = 0 of multiplicity /, we have
H(0) # 0 and H(0) # oo, so H(¢) is holomorphic in C and which has zeros only
of multiplicity at least m. From(3.2), we get

, (7) .
@) = RS 1O ),

spherically uniformly on compact subsets of C. As the above, on every compact
subsets of C, we have

A (0n8) + 2L ai(04€) £ (00€) — 9(0n)
o

—H® (@) - ¢ (33)

locally uniformly on C. By the assumption of Theorem 2 and (3.3), Hurwitz’s
theorem implies that all zeros of H¥) (&) — & have multiplicity at least 7.

If H() is a transcendental function, then T(r, H® — &) = T(r, H®X) + S(r, H).
By Nevanlinna’s first fundamental theorem, we have

)+ mlr, )
= m(r,%—l—m%_cl)-l-s(?’,hl)
< m(r,ﬁ)—l—S(r,H)
< T(r, HFH) — N(r, @) +S(r, H)
< T(r, H®) + (1 + )N(, H¥) = N(r,——) + S(r, H)

H(k+1+1)
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both sides add N(r, #) + N(r, ﬁ_é,), we have

T H) < U+ DN HY) 4N )+ Nl )
—N(r,@)-l—S(r,H)
< (k+1+4+1)N(r, %) + (I+1)N(r, m%—gl) +S(r, H)
< k_FT;;lN(r,%)—i—l_;l (r,H(k)l_gl)—i—S(r,H)
< SEING ) + TR0, H) + NG H) + S(0r, H)
< T B ) + 50 )

In above, we have used the fact that H(¢) is a entire function in both the second
and last inequalities. This is a contradiction since +p 1y LAR l <1andl < p.

If H({) is a constant, then we have H®) (¢) — ¢ = —Cl ThlS is a contradiction
since H®) (&) — & has zeros only of multiplicity at least 7.
Therefore, H({) is a nonconstant polynomial. Set

H(E) = a(& — a1)" (& — a2)". (& — )™ (3.4)
(&) — & = b(&—B1)™ (& — B2)"™..(E — Bs)™ (3.5)

where a, b are two nonzero constants, and n; > m, mj > n are both positive
integers fori =1,2,...,t, j =1,2,...,5.Set N = deg H, then

N =mn1 +ny+ ...+ ny, (3.6)
and
deg(H"(¢) - ¢') =
mi+my+..+mg=N—k. (3.7)

If o; = /3 ], then H(B;) = 0, since H(¢) has zeros only of multiplicity at least m,

we have H (ﬁ]) = 0. Thus, from (3.5) we have §; = 0, without loss of generality,
we may assume j = 1. On the other hand, from (3 5) we have

HED (@) —11=g"""p(©) (8.8)

where p(¢) is a nonconstant polynomial and p(0) # 0. This is a contradiction.
Therefore, a; # pjfori=1,2,..,t, j =1,2,..,s and that they are all zeros of

HUHHY) of multiplicity n; — (k+141), mi—(I+1)fori=1,2,..,t,j=1,2,..,s
Since

deg(H*# (7)) = deg H(E) — (k+1+1) =N — (k+1+1)
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So
N—(k+I4+1)t+N—-k—(I+1)s<N—-(k+1+1) (3.9)

From (3.9), we have
N<(k+I+Dt+{I+1)(s—1) (3.10)

Noting that n; > m, from (3.6) we have t < % Noting that m; > n, from (3.7) we
have s < NT_k Therefore, we have
Ck+I+1 141

< —
(1 ~ )N < ———k

This is a contradiction. Thus, we have proved that G is normal in A.

It remains to show that F is normal at z = 0. Since G is normal on A, then the
family G is equicontinuous on A with respect to the spherical distance. Noting
that ¢(0) = oo for each ¢ € G, so there exist § > 0 such that |g(z)| > 1 for
all ¢ € G and each z € A;. On the other hand, since F is normal in A}, then F
1={1/f : f € F}isnormalin Af, butitis not normal in A;. Therefore, there exist
a sequence {1/ f,} C F; which converges locally uniformly on A, but it is not
on As. Since f(z) # 0 for every f € F, then F is a holomorphic function family.
The maximum modulus principle implies that 1/f, — oo on Aj, and hence so
does {gn} C G, where g, = fu/¥. But |gu(z)| > 1 for z € A4, a contradiction.
This finally completes the proof of Theorem 2. |

4 Proof of Theorem 3

Proof. Without loss of generality, we may assume D = A = {z:|z| < 1}, and
P(z) = @ (z € A), where | is a non-negative integer with I < k, ¢(0) =
1,9(z) #0,0on A = {z:0< |z| <1}. If ] = 0, then by Theorem 1 we know
that Theorem 3 is valid. If [ is a positive integer with | < k, also by Theorem 1, it
is enough to show that F is normal at z = 0.

Suppose, on the contrary, that F is not normal at z = 0. By lemma 1(with
« = k — 1), there exist a sequence of functions f, € F, a sequence of complex
numbers z,, — 0 and a sequence of positive numbers p, — 0, such that

) — fu(zn + pnd)

converges spherically uniformly on compact subsets of C, where F(¢) is a non-
constant holomorphic function on C, and all of whose zeros have multiplicity at
least m. Now we distinguish two cases:

Casel. z,,/py — 0.

Set

gn(g) = Ziz_kfn(zn(l +¢))
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Clearly, all zeros of g, have multiplicity at least m. Since

0z _ PEA+E) i, _ 9(za(1+9))
o @) == alfa” G (148)) = a7

= A 2014+ 8) — P(za(1+8))]

by the assumption of Theorem 3 and Hurwits’s theorem, we know that all zeros of

gﬁ,k) (&) — % have multiplicity at least n in A. On the other hand, %

is holomorphic in A for each 7, and
P(zn(1+¢)) 1
0
arey are?Y

for ¢ € A. Then, by Lemma 3, {g,} is normal in A.
So we can find a subsequence {gx;} C {gx} and a function g such that

gy (§) = 2y, " fuy (20, (1 + €)) — g(E) (4.2)

converges spherically locally on A.
If g(0) # oo, from (4.1) and (4.2), and noting z,, / p, — oo, we have

FED @) = lim £ (2, + pu &) = lim fr(f_l)(znf“”f(?@
nj

j—oo j—oo
— 1im g 1(Pg) = g (0) (4.3)
j—rco an

It follows from (4.3) that F*—D (&) must be a finite constant, and then F(¢) is a
polynomial with degree at most k — [. But this is impossible since all zeros of
F(¢) have multiplicity at least m.

If g(0) = oo, then

Prj o 1k _
gn](z_njg) - an fnj (an + .On]{f) — g(O) =
j
and therefore
fn;(zu; + pn.C) Zn; 11 1
F(g) = ]—>00 ! ]k_l ! - 1—)00 _])k lzilj kfﬂj(zn]' +Pn,€) = 0
nofl]‘ ] Pn]

which is impossible since F is a nonconstant holomorphic function.
Case2. z,,/py — a, a finite complex number. Then

L9 (zn + pné 1
RO -F (Zn(i Png)l G (@ +¢)

on C — {—a}. Noting that

1
R (@) = BB gl (1) e+ 012) — zn + p12)
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and all zeros of fr(lk) (zn + pnC) — ¥(zn + puC) have multiplicity at least n, Hur-

:lvitz’s theorem implies that all zeros of F) (&) — (Hl L have multiplicity at least

By Nevanlinna’s first and second fundamental theorems (for small functions),
we obtain

T(rFY) < N(nF9)+N(, %) TN 1}@ + §)l> + 5 F)
= k%lN(V’ %) * %N(V’ F) — 1}(a + 5)1) + 50 FO)
< (kiml+%)T(r,p<k>)+5(r,p<k>)

In above, we have used the fact that k%l — ml_ = [mm_&(fig]k and noting that k%l +

% < 1, hence k;—l > ﬁ From the last inequalities and noting that k%l + % <1,
we know that F(¢) is not transcendental. So F(¢) is a nonconstant polynomial.
Set

F(&) = a(g — a1)" (8 — a2)™...(¢ — a)™ (44)
1 B(E — B1)™ (& — By)™...(E — )™

where a,b are two nonzero constants, and n; > m, mj > n are both positive
integers fori =1,2,...,t, j =1,2,...,5.Set N = deg F, then

N=ny+ny+..+n, (4.6)

and
mi+my+..+mg=N+1—k 4.7)

If a; = Bj, then F(B;) = 0, since F(¢) has zeros only of multiplicity at least

m, we have F¥) (Bj) = 0. Thus, from(4.5) we have 1/(a + ,B]-)l = 0, which is
impossible. Therefore, a; # Bj fori=1,2,..,t,j=1,2,..5s.
From (4.5), we have

(+&'FO(E) — 1 =b(& — B1)™(E — B2)"2...(E — Bs)"™

Hence

o+ &) TTFO (@) + (a4 ) FED (@) = (2= pr)™ (&= Bs)™ 7 'g()  (4.8)

where ¢(¢) is a polynomial of degg = s — 1.

Since —«, «; are both the zeros of left side of (4.8) of multiplicity [ — 1, n; —
(k+1) fori=1,2,..,s. From (4.8), we have —«, a; are both the zeros of g(¢) of
multiplicity I — 1, n; — (k+ 1) fori = 1,2, ...,s. Thus

[—1+N—(k+1)t<s—1



546 L. Zhao - X. Wu

So
Ng(k+1)t+s—l§k;1N+N+nl_k—l 4.9)
From(4.9), we have
k+1 1 k—1
_r-_ = < (-
I-——= 2 IN<—(——+I)

This is a contradiction. Thus, we have proved that F is normal in A. Theorem 3
is proved. n
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