Normal families of holomorphic functions and multiple values*

Lijuan Zhao Xiangzhong Wu

Abstract

Let \mathcal{F} be a family of holomorphic functions defined in $D \subset C$, and let k, m, n, p be four positive integers with $\frac{k+p+1}{m}+\frac{p+1}{n}<1$. Let $\psi(\not \equiv 0, \infty)$ be a meromorphic function in D and which has zeros only of multiplicities at most p. Suppose that, for every function $f \in \mathcal{F}$, (i) f has zeros only of multiplicities at least m; (ii) all zeros of $f^{(k)}-\psi(z)$ have multiplicities at least n; (iii) all poles of ψ have multiplicities at most k, and (iv) $\psi(z)$ and $f(z)$ have no common zeros, then \mathcal{F} is normal in D.

1 Introduction

In this paper, we shall use the standard notations of value distribution theory, which can be found in ([6],[13],[17], etc.). We denote by $S(r, f)$ any function satisfying $S(r, f)=o\{T(r, f)\}$ as $r \rightarrow \infty$, possibly outside a set with finite linear measure.

Let D be a domain in C, and \mathcal{F} be a family of meromorphic functions defined on $D . \mathcal{F}$ is said to be normal on D, in the sense of Montel, if for any sequence $f_{n} \in \mathcal{F}$ there exists a subsequence $f_{n_{j}}$, such that $f_{n_{j}}$ converges spherically locally uniformly on D, to a meromorphic function or ∞ (see [6],[13],[17]).

One of the most celebrated results in the theory of normal families is the following Gu's normality criterion (see [5], the holomorphic case is due to Miranda [9]), which is a conjecture of Hayman [7].

[^0]Theorem A. Let \mathcal{F} be a family of meromorphic functions in a domain D, and let k be a positive integer. If for every function $f \in \mathcal{F}, f \neq 0, f^{(k)} \neq 1$, then \mathcal{F} is normal on D.

This result has undergone various extensions(see [1], [2], [10], [11], [14], [15], etc.). Yang and Zhang proved that the conditions $f \neq 0$ and $f^{(k)} \neq 1$ are all can be weakened in the holomorphic case. In fact, they proved the following result(see [17]).

Theorem B. Let \mathcal{F} be a family of holomorphic functions defined in D, and let k, m, n be three positive integers. If for every function $f \in \mathcal{F}, f$ has zeros only of multiplicities at least $m, f^{(k)}-1$ has zeros only of multiplicities at least n and $\frac{k+1}{m}+\frac{1}{n}<1$, then \mathcal{F} is normal in D.

A natural problem arises: what can we say if we replace the constant 1 by a holomorphic function $\psi(\not \equiv 0)$ in Theorem B? In this paper, we prove the following result.

Theorem 1. Let \mathcal{F} be a family of holomorphic functions defined in $D \subset C$, and let k, m, n, p be four positive integers with $\frac{k+p+1}{m}+\frac{p+1}{n}<1$. Let $\psi(\not \equiv 0)$ be a holomorphic function in D and which has zeros only of multiplicities at most p. Suppose that, for every function $f \in \mathcal{F}$,
(i) f has zeros only of multiplicities at least m in D;
(ii) $f^{(k)}-\psi(z)$ has zeros only of multiplicities at least n in D; and
(iii) $\psi(z)$ and $f(z)$ have no common zeros in D,
then \mathcal{F} is normal in D.
In fact, we prove the following more general result.
Theorem 2. Let \mathcal{F} be a family of holomorphic functions defined in $D \subset C$, and k, m, n, p be four positive integers with $\frac{k+p+1}{m}+\frac{p+1}{n}<1$. Let $\psi(\equiv \equiv 0), a_{0}, a_{1}, \ldots, a_{k-1}$ be holomorphic functions in D, where $\psi(z)$ has zeros only of multiplicities at most p. Suppose that, for every function $f \in \mathcal{F}$,
(i) f has zeros only of multiplicities at least m in D;
(ii) $f^{(k)}(z)+a_{k-1}(z) f^{(k-1)}(z)+\ldots+a_{1}(z) f^{\prime}(z)+a_{0}(z) f(z)-\psi(z)$ has zeros only of multiplicities at least n in D; and
(iii) $\psi(z)$ and $f(z)$ have no common zeros in D,
then \mathcal{F} is normal in D.
Furthermore, it is natural to ask: whether or not the above result holds if we extend $\psi(z)$ to the meromorphic case? We first prove the following result.

Theorem 3. Let \mathcal{F} be a family of holomorphic functions defined in $D \subset C$, let $\psi(\neq$ $0, \not \equiv \infty)$ be a meromorphic function in D, and let k, m, n be three positive integers with $\frac{k+1}{m}+\frac{1}{n}<1$. If, for every function $f \in \mathcal{F}$,
(i) f has zeros only of multiplicities at least m in D;
(ii) all zeros of $f^{(k)}-\psi(z)$ have multiplicities at least n in D; and
(iii) all poles of ψ have multiplicities at most k in D,
then \mathcal{F} is normal in D.

Since normality is a local property, combining Theorem 1 and Theorem 3, we obtain the following theorem.

Theorem 4. Let \mathcal{F} be a family of holomorphic functions defined in $D \subset C$, and let k, m, n, p be four positive integers with $\frac{k+p+1}{m}+\frac{p+1}{n}<1$. Let $\psi(\not \equiv 0, \infty)$ be a meromorphic function in D and which has zeros only of multiplicities at most p. Suppose that, for every function $f \in \mathcal{F}$,
(i) f has zeros only of multiplicities at least m in D;
(ii) all zeros of $f^{(k)}-\psi(z)$ have multiplicities at least n in D;
(iii) all poles of ψ have multiplicities at most k in D; and
(iv) $\psi(z)$ and $f(z)$ have no common zeros in D,
then \mathcal{F} is normal in D.

2 Some lemmas

The well-known Zalcman's lemma is a very important tool in the study of normal families. It has also undergone various extensions and improvements. The following is one-to-date local version, which is due to Pang and Zalcman(see [12]).

Lemma 1. Let k be a positive integer and let \mathcal{F} be a family of holomorphic function in a domain D, such that each function $f \in \mathcal{F}$ has zeros only of multiplicities at least k, and suppose that there exists $A \geq 1$ such that $\left|f^{(k)}(z)\right| \leq A$ whenever $f(z)=0, f \in \mathcal{F}$. If \mathcal{F} is not normal at $z_{0} \in D$, then for each $\alpha, 0 \leq \alpha \leq k$, there exist a sequence of points $z_{n} \in D, z_{n} \rightarrow z_{0}$, a sequence of positive numbers $\rho_{n} \rightarrow 0$, and a sequence of functions $f_{n} \in \mathcal{F}$ such that

$$
g_{n}(\xi)=\frac{f_{n}\left(z_{n}+\rho_{n} \xi\right)}{\rho_{n}^{\alpha}} \rightarrow g(\xi)
$$

locally uniformly with respect to the spherical metric, where $g(\xi)$ is a nonconstant holomorphic function on C, all of whose zeros have multiplicity at least k, such that $g^{\#}(\xi) \leq$ $g^{\#}(0)=k A+1$. Moreover, $g(\xi)$ has order at most 1 .

Here, as usual, $g^{\#}(\xi)=\left|g^{\prime}(\xi)\right| /\left(1+|g(\xi)|^{2}\right)$ is the spherical derivative.
Lemma 2. Let \mathcal{F} be a family of holomorphic functions defined in $D \subset C$, and k, m, n, p be four positive integers. Let $b(z)(\neq 0), a_{0}, a_{1}, \ldots, a_{k-1}$ be holomorphic functions in D. Suppose that, for every function $f \in \mathcal{F}, f$ has zeros only of multiplicities at least $m, f^{(k)}(z)+a_{k-1}(z) f^{(k-1)}(z)+\ldots+a_{1}(z) f^{\prime}(z)+a_{0}(z) f(z)-b(z)$ has zeros only of multiplicities at least n and $\frac{k+1}{m}+\frac{1}{n}<1$, then \mathcal{F} is normal in D.

Proof. Without loss of generality, we may assume $D=\Delta=\{z:|z|<1\}$. Suppose that \mathcal{F} is not normal at $z_{0} \in D$. By Lemma 1 , there exist a sequence of points $z_{n} \rightarrow z_{0}$, a sequence of positive numbers $\rho_{n} \rightarrow 0$, and a sequence of functions $f_{n} \in \mathcal{F}$ such that

$$
g_{n}(\xi)=\frac{f_{n}\left(z_{n}+\rho_{n} \xi\right)}{\rho_{n}^{k}} \rightarrow g(\xi)
$$

locally uniformly with respect to the spherical metric, where $g(\xi)$ is a nonconstant holomorphic function on C, all of whose zeros have multiplicity at least m. we have

$$
\begin{aligned}
& g_{n}^{(k)}(\tilde{\xi})+\sum_{i=0}^{k-1} \rho_{n}^{k-i} a_{i}\left(z_{n}+\rho_{n} \xi\right) g_{n}^{(i)}(\xi)-b\left(z_{n}+\rho_{n} \xi\right) \\
= & f_{n}^{(k)}\left(z_{n}+\rho_{n} \xi\right)+\sum_{i=0}^{k-1} a_{i}\left(z_{n}+\rho_{n} \xi\right) f_{n}^{(i)}\left(z_{n}+\rho_{n} \xi\right)-b\left(z_{n}+\rho_{n} \xi\right)
\end{aligned}
$$

Noting that $a_{i}\left(z_{n}+\rho_{n} \xi\right) g_{n}^{(i)}(\xi)$ is locally bounded on C since $a_{i}\left(z_{n}+\rho_{n} \xi\right) g_{n}^{(i)}(\xi) \rightarrow$ $a_{i}\left(z_{0}\right) g^{(i)}(\xi)$, on every compact subset of C, we have

$$
\begin{equation*}
g_{n}^{(k)}(\xi)+\sum_{i=0}^{k-1} \rho_{n}^{k-i} a_{i}\left(z_{n}+\rho_{n} \xi\right) g_{n}^{(i)}(\xi)-b\left(z_{n}+\rho_{n} \xi\right) \rightarrow g^{(k)}(\xi)-b\left(z_{0}\right) \tag{2.1}
\end{equation*}
$$

Since $f_{n}^{(k)}\left(z_{n}+\rho_{n} \xi\right)+a_{k-1}\left(z_{n}+\rho_{n} \xi\right) f_{n}^{(k-1)}\left(z_{n}+\rho_{n} \xi\right)+\ldots+a_{1}\left(z_{n}+\rho_{n} \xi\right) f_{n}^{\prime}\left(z_{n}+\right.$ $\left.\rho_{n} \xi\right)+a_{0}\left(z_{n}+\rho_{n} \xi\right) f_{n}\left(z_{n}+\rho_{n} \xi\right)-b\left(z_{n}+\rho_{n} \xi\right)$ has zeros only of multiplicities at least n, from (2.1), Hurwitz's theorem yields that $g^{(k)}(\xi)-b\left(z_{0}\right)$ has zeros only of multiplicities at least n, by Milloux's inequality and Nevanlinna's first fundamental theorem, we have

$$
\begin{aligned}
T(r, g) & \leq \bar{N}(r, g)+N\left(r, \frac{1}{g}\right)+N\left(r, \frac{1}{g^{(k)}-b\left(z_{0}\right)}\right)-N\left(r, \frac{1}{g^{(k+1)}}\right)+S(r, g) \\
& \leq(k+1) \bar{N}\left(r, \frac{1}{g}\right)+\bar{N}\left(r, \frac{1}{g^{(k)}-b\left(z_{0}\right)}\right)+S(r, g) \\
& \leq \frac{k+1}{m} N\left(r, \frac{1}{g}\right)+\frac{1}{n} N\left(r, \frac{1}{g^{(k)}-b\left(z_{0}\right)}\right)+S(r, g) \\
& \leq \frac{k+1}{m} T(r, g)+\frac{1}{n}(T(r, g)+k \bar{N}(r, g))+S(r, g) \\
& \leq\left(\frac{k+1}{m}+\frac{1}{n}\right) T(r, g)+S(r, g)
\end{aligned}
$$

In above, we have used the fact that $g(\xi)$ is entire function in both the second and last inequalities. This is contradicts the fact that $g(\xi)$ is a nonconstant holomorphic function on C and $\frac{k+1}{m}+\frac{1}{n}<1$. Lemma 2 is proved.

Lemma 3. Let $\mathcal{F}=\left\{f_{n}\right\}$ be a family of holomorphic functions defined in $D \subset C$, and let k, m, n be three positive integers with $\frac{k+1}{m}+\frac{1}{n}<1$. Let $\varphi_{n}(z)$ be a sequence of holomorphic functions on D such that $\varphi_{n} \rightarrow \varphi$ locally uniformly on D, where $\varphi(z)(\neq 0)$ is a holomorphic function on D. If all zeros of f_{n} have multiplicities at least $m, f_{n}^{(k)}(z)-$ $\varphi_{n}(z)$ has zeros only of multiplicities at least n, then \mathcal{F} is normal in D.

Proof. We omit the proof since it can be carried out in the line of prove of Lemma 2.

3 Proof of Theorem 2

Proof. Since normality is a local property, without loss of generality, we may assume $D=\Delta=\{z:|z|<1\}$, and $\psi(z)=z^{l} \varphi(z)(z \in \Delta)$, where l is a non-negative integer with $l \leq p, \varphi(0)=1, \varphi(z) \neq 0$ on $\Delta^{\prime}=\{z: 0<|z|<1\}$.If $l=0$, then by lemma 2 we know that Theorem 2 is valid. If l is a positive integer with $l \leq p$, also by lemma 2 , we only need to prove that \mathcal{F} is normal at $z=0$. Consider the family $\mathcal{G}=\left\{g(z)=\frac{f(z)}{\psi(z)}: f \in \mathcal{F}, z \in \Delta\right\}$. Since $\psi(z)$ and $f(z)$ have no common zeros for each $f \in \mathcal{F}$, we get $g(0)=\infty$ for each $g \in \mathcal{G}$. we first prove that \mathcal{G} is normal in Δ. Suppose, on the contrary, that \mathcal{G} is not normal at $z_{0} \in \Delta$. By lemma 1 , there exist a sequence of functions $g_{n} \in \mathcal{G}$, a sequence of complex numbers $z_{n} \rightarrow z_{0}$ and a sequence of positive numbers $\rho_{n} \rightarrow 0$, such that

$$
G_{n}(\xi)=\frac{g_{n}\left(z_{n}+\rho_{n} \xi\right)}{\rho_{n}^{k}}=\frac{f_{n}\left(z_{n}+\rho_{n} \xi\right)}{\rho_{n}^{k} \psi\left(z_{n}+\rho_{n} \xi\right)} \rightarrow G(\xi)
$$

converges spherically uniformly on compact subsets of C, where $G(\xi)$ is a nonconstant meromorphic function on C, and all of whose zeros have multiplicity at least m. We distinguish two cases:
Case1. $z_{n} / \rho_{n} \rightarrow \infty$. Since $G_{n}\left(-z_{n} / \rho_{n}\right)=g_{n}(0) / \rho_{n}^{k}$, then the pole of G_{n} corresponding to that of g_{n} at 0 drifts off to infinity,$G(\xi)$ has no poles.
By a simple calculation, for $0 \leq i \leq k$, we have

$$
\begin{align*}
& g_{n}^{(i)}(z)=\frac{f_{n}^{(i)}(z)}{\psi(z)}-\sum_{j=1}^{i}\binom{i}{j} g_{n}^{(i-j)}(z) \frac{\psi^{(j)}(z)}{\psi(z)}= \\
& \frac{f_{n}^{(i)}(z)}{\psi(z)}-\sum_{j=1}^{i}\left[\binom{i}{j} g_{n}^{(i-j)}(z) \sum_{t=0}^{j} A_{j t} \frac{1}{z^{j-t}} \frac{\varphi^{(t)}(z)}{\varphi(z)}\right] \tag{3.1}
\end{align*}
$$

where $A_{j t}=l(l-1) \ldots(l-j+t+1)\binom{j}{t}$ if $l \geq j, A_{j t}=0$ if $l<j$, for $t=$ $0,1, \ldots, j-1$ and $A_{j j}=1$. Thus, from (3.1) we have

$$
\begin{aligned}
\rho_{n}^{k-i} G_{n}^{(i)}(\xi)= & g_{n}^{(i)}\left(z_{n}+\rho_{n} \xi\right) \\
= & \frac{f_{n}^{(i)}\left(z_{n}+\rho_{n} \xi\right)}{\psi\left(z_{n}+\rho_{n} \xi\right)}-\sum_{j=1}^{i}\left[\binom{i}{j} g_{n}^{(i-j)}\left(z_{n}+\rho_{n} \xi\right)\right. \\
& \left.\sum_{t=0}^{j} A_{j t} \frac{1}{\left(z_{n}+\rho_{n} \xi\right)^{j-t}} \frac{\varphi^{(t)}\left(z_{n}+\rho_{n} \xi\right)}{\varphi\left(z_{n}+\rho_{n} \xi\right)}\right] \\
= & \frac{f_{n}^{(i)}\left(z_{n}+\rho_{n} \xi\right)}{\psi\left(z_{n}+\rho_{n} \xi\right)}-\sum_{j=1}^{i}\left[\binom{i}{j} \frac{g_{n}^{(i-j)}\left(z_{n}+\rho_{n} \xi\right)}{\rho_{n}^{j}}\right. \\
& \left.\sum_{t=0}^{j} A_{j t} \frac{1}{\left(z_{n} / \rho_{n}+\xi\right)^{j-t}} \frac{\rho_{n}^{j} \varphi^{(t)}\left(z_{n}+\rho_{n} \xi\right)}{\varphi\left(z_{n}+\rho_{n} \tilde{\xi}\right)}\right]
\end{aligned}
$$

On the other hand, we have

$$
\lim _{n \rightarrow \infty} \frac{1}{\left(z_{n} / \rho_{n}+\xi\right)}=0
$$

and

$$
\lim _{n \rightarrow \infty} \frac{\rho_{n}^{j} \varphi^{(t)}\left(z_{n}+\rho_{n} \xi\right)}{\varphi\left(z_{n}+\rho_{n} \tilde{\xi}\right)}=0
$$

for $t \geq 1$. Noting that $g_{n}^{(i-j)}\left(z_{n}+\rho_{n} \xi\right) / \rho_{n}^{j}$ is locally bounded on C since $g_{n}\left(z_{n}+\rho_{n} \xi\right) / \rho_{n}^{k} \rightarrow G(\xi)$. Therefore, on every compact subset of C, we have

$$
\frac{f_{n}^{(k)}\left(z_{n}+\rho_{n} \xi\right)}{\psi\left(z_{n}+\rho_{n} \xi\right)} \rightarrow G^{(k)}(\xi)
$$

and

$$
\frac{f_{n}^{(i)}\left(z_{n}+\rho_{n} \xi\right)}{\psi\left(z_{n}+\rho_{n} \tilde{\xi}\right)} \rightarrow 0
$$

for $i=0,1, \ldots, k-1$, and thus
$\frac{f_{n}^{(k)}\left(z_{n}+\rho_{n} \xi\right)+\sum_{i=0}^{k-1} a_{i}\left(z_{n}+\rho_{n} \xi\right) f_{n}^{(i)}\left(z_{n}+\rho_{n} \xi\right)-\psi\left(z_{n}+\rho_{n} \xi\right)}{\psi\left(z_{n}+\rho_{n} \tilde{\xi}\right)} \rightarrow G^{(k)}(\xi)-1$,
since $a_{0}, a_{1}, \ldots, a_{k-1}$ are analytic in D.
Noting that $f_{n}^{(k)}\left(z_{n}+\rho_{n} \tilde{\xi}\right)+\sum_{i=0}^{k-1} a_{i}\left(z_{n}+\rho_{n} \tilde{\xi}\right) f_{n}^{(i)}\left(z_{n}+\rho_{n} \tilde{\xi}\right)-\psi\left(z_{n}+\rho_{n} \tilde{\xi}\right)$ has zeros only of multiplicity at least n, and $\psi\left(z_{n}+\rho_{n} \xi\right)$ has zeros only at $\xi=-\frac{z_{n}}{\rho_{n}} \rightarrow$ ∞. Therefore, we have $G^{(k)}(\xi)-1$ has zeros only of multiplicity at least n. Next we can arrive at a contradiction by the same argument as in the latter part of proof of Lemma 2 since $\frac{k+1}{m}+\frac{1}{n}<\frac{k+p+1}{m}+\frac{p+1}{n}<1$.
Case2. $z_{n} / \rho_{n} \rightarrow \alpha$, a finite complex number. Then

$$
\frac{g_{n}\left(\rho_{n} \xi\right)}{\rho_{n}^{k}}=\frac{g_{n}\left(z_{n}+\rho_{n}\left(\tilde{\xi}-z_{n} / \rho_{n}\right)\right)}{\rho_{n}^{k}}=G_{n}\left(\xi-z_{n} / \rho_{n}\right) \rightarrow G(\xi-\alpha)=\tilde{G}(\xi)
$$

spherically uniformly on compact subsets of Clearly, $\tilde{G}(\tilde{\xi})$ has zeros only of multiplicity at least m, and $\tilde{G}(\xi)$ has a pole only at $\xi=0$. We claim that $\tilde{G}(\xi)$ has a pole only at $\xi=0$ of multiplicity l. Since $\frac{g_{n}\left(\rho_{n} \xi\right)}{\rho_{n}^{k}}=\frac{f_{n}\left(\rho_{n} \xi\right)}{\psi\left(\rho_{n} \xi\right) \rho_{n}^{k}}=\frac{f_{n}\left(\rho_{n} \xi\right)}{\xi^{l} \varphi\left(\rho_{n} \xi\right) \rho_{n}^{k+1}}$, $f_{n}(\xi)$ and $\psi(\xi)$ don't have common zeros and $\rho_{n} \rightarrow 0$, thus there exist $r>0(<1)$ such that $f_{n}\left(\rho_{n} \xi\right)$ don't have zeros in Δ_{r} when n is large enough. Thus $\frac{\rho_{n}^{k}}{g_{n}\left(\rho_{n} \xi\right)}$ is holomorphic in Δ_{r} and $\xi=0$ is the only zero of $\frac{\rho_{n}^{k}}{g_{n}\left(\rho_{n} \xi\right)}$ of multiplicity l. On the other hand, since $\tilde{G}(\xi)$ has a pole only at $\xi=0$, we have $\frac{1}{\tilde{G}(\xi)}$ has a zero only at $\xi=0$. Therefore, there exist $\varepsilon_{0}>0$ such that $\left|\frac{1}{G(\xi)}\right|>\varepsilon_{0}$ when $|\xi|=r^{\prime}$, where $0<r^{\prime}<r$, and $\left|\frac{\rho_{n}^{k}}{g_{n}\left(\rho_{n} \zeta\right)}-\frac{1}{G(\xi)}\right|<\varepsilon_{0}$ when n is large enough. By Rouche's theorem we obtain $\frac{1}{\hat{G}(\xi)}$ has a zero only at $\xi=0$ of multiplicity l. Thus we have proved
the claim.
Set

$$
\begin{equation*}
H_{n}(\xi)=\frac{f_{n}\left(\rho_{n} \xi\right)}{\rho_{n}^{k+l}} \tag{3.2}
\end{equation*}
$$

Then

$$
H_{n}(\xi)=\frac{\psi\left(\rho_{n} \xi\right)}{\rho_{n}^{l}} \frac{f_{n}\left(\rho_{n} \xi\right)}{\rho_{n}^{k} \psi\left(\rho_{n} \tilde{\xi}\right)}=\frac{\psi\left(\rho_{n} \xi\right)}{\rho_{n}^{l}} \frac{g_{n}\left(\rho_{n} \xi\right)}{\rho_{n}^{k}} .
$$

Noting that $\frac{\psi\left(\rho_{n} \xi\right)}{\rho_{n}^{l}} \rightarrow \xi^{l}$, thus $H_{n}(\xi) \rightarrow \xi^{l} \tilde{G}(\xi)=H(\xi)$ uniformly on compact subsets of C. Since $\tilde{G}(\xi)$ has a pole only at $\xi=0$ of multiplicity l, we have $H(0) \neq 0$ and $H(0) \neq \infty$, so $H(\xi)$ is holomorphic in C and which has zeros only of multiplicity at least m. From(3.2), we get

$$
H_{n}^{(i)}(\xi)=\frac{f_{n}^{(i)}\left(\rho_{n} \xi\right)}{\rho_{n}^{k+l-i}} \rightarrow H^{(i)}(\xi)
$$

spherically uniformly on compact subsets of C. As the above, on every compact subsets of C, we have

$$
\begin{equation*}
\frac{f_{n}^{(k)}\left(\rho_{n} \xi\right)+\sum_{i=0}^{k-1} a_{i}\left(\rho_{n} \xi\right) f_{n}^{(i)}\left(\rho_{n} \xi\right)-\psi\left(\rho_{n} \xi\right)}{\rho_{n}^{l}} \rightarrow H^{(k)}(\xi)-\xi^{l} \tag{3.3}
\end{equation*}
$$

locally uniformly on C. By the assumption of Theorem 2 and (3.3), Hurwitz's theorem implies that all zeros of $H^{(k)}(\xi)-\xi^{l}$ have multiplicity at least n.

If $H(\tilde{\xi})$ is a transcendental function, then $T\left(r, H^{(k)}-\tilde{\xi}^{l}\right)=T\left(r, H^{(k)}\right)+S(r, H)$. By Nevanlinna's first fundamental theorem, we have

$$
\begin{aligned}
& m\left(r, \frac{1}{H}\right)+m\left(r, \frac{1}{H^{(k)}-\xi^{l}}\right) \\
= & m\left(r, \frac{1}{H}+\frac{1}{H^{(k)}-\xi^{l}}\right)+S(r, H) \\
\leq & m\left(r, \frac{1}{H^{(k+l+1)}}\right)+S(r, H) \\
\leq & T\left(r, H^{(k+l+1)}\right)-N\left(r, \frac{1}{H^{(k+l+1)}}\right)+S(r, H) \\
\leq & T\left(r, H^{(k)}\right)+(l+1) \bar{N}\left(r, H^{(k)}\right)-N\left(r, \frac{1}{H^{(k+l+1)}}\right)+S(r, H)
\end{aligned}
$$

both sides add $N\left(r, \frac{1}{H}\right)+N\left(r, \frac{1}{\left.H^{(k)}-\xi^{l}\right)}\right)$, we have

$$
\begin{aligned}
T(r, H) \leq & (l+1) \bar{N}\left(r, H^{(k)}\right)+N\left(r, \frac{1}{H}\right)+N\left(r, \frac{1}{H^{(k)}-\xi^{l}}\right) \\
& -N\left(r, \frac{1}{H^{(k+l+1)}}\right)+S(r, H) \\
\leq & (k+l+1) \bar{N}\left(r, \frac{1}{H}\right)+(l+1) \bar{N}\left(r, \frac{1}{H^{(k)}-\xi^{l}}\right)+S(r, H) \\
\leq & \frac{k+l+1}{m} N\left(r, \frac{1}{H}\right)+\frac{l+1}{n} N\left(r, \frac{1}{H^{(k)}-\xi^{l}}\right)+S(r, H) \\
\leq & \frac{k+l+1}{m} N\left(r, \frac{1}{H}\right)+\frac{l+1}{n}(T(r, H)+k \bar{N}(r, H))+S(r, H) \\
\leq & \left(\frac{k+l+1}{m}+\frac{l+1}{n}\right) T(r, H)+S(r, H)
\end{aligned}
$$

In above, we have used the fact that $H(\xi)$ is a entire function in both the second and last inequalities. This is a contradiction since $\frac{k+p+1}{m}+\frac{p+1}{n}<1$ and $l \leq p$.

If $H(\xi)$ is a constant, then we have $H^{(k)}(\xi)-\xi^{l}=-\xi^{l}$. This is a contradiction since $H^{(k)}(\tilde{\xi})-\xi^{l}$ has zeros only of multiplicity at least n.

Therefore, $H(\xi)$ is a nonconstant polynomial. Set

$$
\begin{gather*}
H(\xi)=a\left(\xi-\alpha_{1}\right)^{n_{1}}\left(\xi-\alpha_{2}\right)^{n_{2}} \ldots\left(\xi-\alpha_{t}\right)^{n_{t}} \tag{3.4}\\
H^{(k)}(\xi)-\xi^{l}=b\left(\xi-\beta_{1}\right)^{m_{1}}\left(\xi-\beta_{2}\right)^{m_{2}} \ldots\left(\xi-\beta_{s}\right)^{m_{s}} \tag{3.5}
\end{gather*}
$$

where a, b are two nonzero constants, and $n_{i} \geq m, m_{j} \geq n$ are both positive integers for $i=1,2, \ldots, t, j=1,2, \ldots, s$. Set $N=\operatorname{deg} H$, then

$$
\begin{equation*}
N=n_{1}+n_{2}+\ldots+n_{t} \tag{3.6}
\end{equation*}
$$

and

$$
\begin{align*}
& \operatorname{deg}\left(H^{(k)}(\xi)-\xi^{l}\right)=N-k \\
& m_{1}+m_{2}+\ldots+m_{s}=N-k \tag{3.7}
\end{align*}
$$

If $\alpha_{i}=\beta_{j}$, then $H\left(\beta_{j}\right)=0$, since $H(\xi)$ has zeros only of multiplicity at least m, we have $H^{(k)}\left(\beta_{j}\right)=0$. Thus, from (3.5) we have $\beta_{j}=0$, without loss of generality, we may assume $j=1$. On the other hand, from (3.5) we have

$$
\begin{equation*}
H^{(k+l)}(\xi)-l!=\xi^{m_{1}-l} p(\xi) \tag{3.8}
\end{equation*}
$$

where $p(\xi)$ is a nonconstant polynomial and $p(0) \neq 0$. This is a contradiction.
Therefore, $\alpha_{i} \neq \beta_{j}$ for $i=1,2, \ldots, t, j=1,2, \ldots, s$ and that they are all zeros of $H^{(k+l+1)}$ of multiplicity $n_{i}-(k+l+1), m_{j}-(l+1)$ for $i=1,2, \ldots, t, j=1,2, \ldots, s$.

Since

$$
\operatorname{deg}\left(H^{(k+l+1)}(\xi)\right)=\operatorname{deg} H(\xi)-(k+l+1)=N-(k+l+1)
$$

So

$$
\begin{equation*}
N-(k+l+1) t+N-k-(l+1) s \leq N-(k+l+1) \tag{3.9}
\end{equation*}
$$

From (3.9), we have

$$
\begin{equation*}
N \leq(k+l+1) t+(l+1)(s-1) \tag{3.10}
\end{equation*}
$$

Noting that $n_{i} \geq m$, from (3.6) we have $t \leq \frac{N}{m}$. Noting that $m_{i} \geq n$, from (3.7) we have $s \leq \frac{N-k}{n}$. Therefore, we have

$$
\left(1-\frac{k+l+1}{m}-\frac{l+1}{n}\right) N \leq-\frac{l+1}{n} k
$$

This is a contradiction. Thus, we have proved that \mathcal{G} is normal in Δ.
It remains to show that \mathcal{F} is normal at $z=0$. Since \mathcal{G} is normal on Δ, then the family \mathcal{G} is equicontinuous on Δ with respect to the spherical distance. Noting that $g(0)=\infty$ for each $g \in \mathcal{G}$, so there exist $\delta>0$ such that $|g(z)| \geq 1$ for all $g \in \mathcal{G}$ and each $z \in \Delta_{\delta}$. On the other hand, since \mathcal{F} is normal in Δ_{δ}^{\prime}, then \mathcal{F} ${ }_{1}=\{1 / f: f \in \mathcal{F}\}$ is normal in Δ_{δ}^{\prime}, but it is not normal in Δ_{δ}. Therefore, there exist a sequence $\left\{1 / f_{n}\right\} \subset \mathcal{F}_{1}$ which converges locally uniformly on Δ_{δ}^{\prime}, but it is not on Δ_{δ}. Since $f(z) \neq 0$ for every $f \in \mathcal{F}$, then \mathcal{F}_{1} is a holomorphic function family. The maximum modulus principle implies that $1 / f_{n} \rightarrow \infty$ on Δ_{δ}^{\prime}, and hence so does $\left\{g_{n}\right\} \subset \mathcal{G}$, where $g_{n}=f_{n} / \psi$. But $\left|g_{n}(z)\right| \geq 1$ for $z \in \Delta_{\delta}$, a contradiction. This finally completes the proof of Theorem 2.

4 Proof of Theorem 3

Proof. Without loss of generality, we may assume $D=\Delta=\{z:|z|<1\}$, and $\psi(z)=\frac{\varphi(z)}{z^{l}}(z \in \Delta)$, where l is a non-negative integer with $l \leq k, \varphi(0)=$ $1, \varphi(z) \neq 0, \infty$ on $\Delta^{\prime}=\{z: 0<|z|<1\}$. If $l=0$, then by Theorem 1 we know that Theorem 3 is valid. If l is a positive integer with $l \leq k$, also by Theorem 1 , it is enough to show that \mathcal{F} is normal at $z=0$.

Suppose, on the contrary, that \mathcal{F} is not normal at $z=0$. By lemma 1(with $\alpha=k-l$), there exist a sequence of functions $f_{n} \in \mathcal{F}$, a sequence of complex numbers $z_{n} \rightarrow 0$ and a sequence of positive numbers $\rho_{n} \rightarrow 0$, such that

$$
\begin{equation*}
F_{n}(\tilde{\xi})=\frac{f_{n}\left(z_{n}+\rho_{n} \xi\right)}{\rho_{n}^{k-l}} \rightarrow F(\tilde{\xi}) \tag{4.1}
\end{equation*}
$$

converges spherically uniformly on compact subsets of C, where $F(\xi)$ is a nonconstant holomorphic function on C, and all of whose zeros have multiplicity at least m. Now we distinguish two cases:
Case1. $z_{n} / \rho_{n} \rightarrow \infty$.
Set

$$
g_{n}(\xi)=z_{n}^{l-k} f_{n}\left(z_{n}(1+\xi)\right)
$$

Clearly, all zeros of g_{n} have multiplicity at least m. Since

$$
\begin{aligned}
g_{n}^{(k)}(\xi)-\frac{\varphi\left(z_{n}(1+\xi)\right)}{(1+\xi)^{l}} & =z_{n}^{l}\left[f_{n}^{(k)}\left(z_{n}(1+\xi)\right)-\frac{\varphi\left(z_{n}(1+\xi)\right)}{\left(z_{n}(1+\xi)\right)^{l}}\right] \\
& =z_{n}^{l}\left[f_{n}^{(k)}\left(z_{n}(1+\xi)\right)-\psi\left(z_{n}(1+\xi)\right)\right]
\end{aligned}
$$

by the assumption of Theorem 3 and Hurwits's theorem, we know that all zeros of $g_{n}^{(k)}(\xi)-\frac{\varphi\left(z_{n}(1+\xi)\right)}{(1+\xi)^{l}}$ have multiplicity at least n in Δ. On the other hand, $\frac{\varphi\left(z_{n}(1+\xi)\right)}{(1+\xi)^{l}}$ is holomorphic in Δ for each n, and

$$
\frac{\varphi\left(z_{n}(1+\xi)\right)}{(1+\xi)^{l}} \rightarrow \frac{1}{(1+\xi)^{l}}(\neq 0)
$$

for $\xi \in \Delta$. Then, by Lemma $3,\left\{g_{n}\right\}$ is normal in Δ.
So we can find a subsequence $\left\{g_{n_{j}}\right\} \subset\left\{g_{n}\right\}$ and a function g such that

$$
\begin{equation*}
g_{n_{j}}(\xi)=z_{n_{j}}^{l-k} f_{n_{j}}\left(z_{n_{j}}(1+\xi)\right) \rightarrow g(\xi) \tag{4.2}
\end{equation*}
$$

converges spherically locally on Δ.
If $g(0) \neq \infty$, from (4.1) and (4.2), and noting $z_{n} / \rho_{n} \rightarrow \infty$, we have

$$
\begin{align*}
F^{(k-l)}(\xi) & =\lim _{j \rightarrow \infty} f_{n_{j}}^{(k-l)}\left(z_{n_{j}}+\rho_{n_{j}} \xi\right)=\lim _{j \rightarrow \infty} f_{n_{j}}^{(k-l)}\left(z_{n_{j}}+z_{n_{j}}\left(\frac{\rho_{n_{j}}}{z_{n_{j}}} \xi\right)\right. \\
& =\lim _{j \rightarrow \infty} g_{n_{j}}^{(k-l)}\left(\frac{\rho_{n_{j}}}{z_{n_{j}}} \xi\right)=g^{(k-l)}(0) \tag{4.3}
\end{align*}
$$

It follows from (4.3) that $F^{(k-l)}(\xi)$ must be a finite constant, and then $F(\xi)$ is a polynomial with degree at most $k-l$. But this is impossible since all zeros of $F(\xi)$ have multiplicity at least m.

If $g(0)=\infty$, then

$$
g_{n_{j}}\left(\frac{\rho_{n_{j}}}{z_{n_{j}}} \xi\right)=z_{n_{j}}^{l-k} f_{n_{j}}\left(z_{n_{j}}+\rho_{n_{j}} \xi\right) \rightarrow g(0)=\infty
$$

and therefore

$$
F(\xi)=\lim _{j \rightarrow \infty} \frac{f_{n_{j}}\left(z_{n_{j}}+\rho_{n_{j}} \xi\right)}{\rho_{n_{j}}^{k-l}}=\lim _{j \rightarrow \infty}\left(\frac{z_{n_{j}}}{\rho_{n_{j}}}\right)^{k-l} z_{n_{j}}^{l-k} f_{n_{j}}\left(z_{n_{j}}+\rho_{n_{j}} \xi\right)=\infty
$$

which is impossible since F is a nonconstant holomorphic function.
Case2. $z_{n} / \rho_{n} \rightarrow \alpha$, a finite complex number. Then

$$
F_{n}^{(k)}(\xi)-\frac{\rho_{n}^{l} \varphi\left(z_{n}+\rho_{n} \xi\right)}{\left(z_{n}+\rho_{n} \xi\right)^{l}} \rightarrow F^{(k)}(\xi)-\frac{1}{(\alpha+\xi)^{l}}
$$

on $C-\{-\alpha\}$. Noting that

$$
F_{n}^{(k)}(\xi)-\frac{\rho_{n}^{l} \varphi\left(z_{n}+\rho_{n} \xi\right)}{\left(z_{n}+\rho_{n} \tilde{\zeta}\right)^{l}}=\rho_{n}^{l}\left(f_{n}^{(k)}\left(z_{n}+\rho_{n} \xi\right)-\psi\left(z_{n}+\rho_{n} \xi\right)\right)
$$

and all zeros of $f_{n}^{(k)}\left(z_{n}+\rho_{n} \xi\right)-\psi\left(z_{n}+\rho_{n} \xi\right)$ have multiplicity at least n, Hurwitz's theorem implies that all zeros of $F^{(k)}(\xi)-\frac{1}{(\alpha+\xi)^{l}}$ have multiplicity at least n.

By Nevanlinna's first and second fundamental theorems (for small functions), we obtain

$$
\begin{aligned}
T\left(r, F^{(k)}\right) & \leq \bar{N}\left(r, F^{(k)}\right)+\bar{N}\left(r, \frac{1}{F^{(k)}}\right)+\bar{N}\left(r, \frac{1}{F^{(k)}-1 /(\alpha+\xi)^{l}}\right)+S\left(r, F^{(k)}\right) \\
& \leq \frac{1}{m-k} N\left(r, \frac{1}{F^{(k)}}\right)+\frac{1}{n} N\left(r, \frac{1}{F^{(k)}-1 /(\alpha+\xi)^{l}}\right)+S\left(r, F^{(k)}\right) \\
& \leq \frac{k+1}{m} N\left(r, \frac{1}{F^{(k)}}\right)+\frac{1}{n} N\left(r, \frac{1}{F^{(k)}-1 /(\alpha+\xi)^{l}}\right)+S\left(r, F^{(k)}\right) \\
& \leq\left(\frac{k+1}{m}+\frac{1}{n}\right) T\left(r, F^{(k)}\right)+S\left(r, F^{(k)}\right)
\end{aligned}
$$

In above, we have used the fact that $\frac{k+1}{m}-\frac{1}{m-k}=\frac{[m-(k+1)] k}{m(m-k)}$ and noting that $\frac{k+1}{m}+$ $\frac{1}{n}<1$, hence $\frac{k+1}{m}>\frac{1}{m-k}$. From the last inequalities and noting that $\frac{k+1}{m}+\frac{1}{n}<1$, we know that $F(\xi)$ is not transcendental. So $F(\xi)$ is a nonconstant polynomial. Set

$$
\begin{gather*}
F(\xi)=a\left(\xi-\alpha_{1}\right)^{n_{1}}\left(\xi-\alpha_{2}\right)^{n_{2}} \ldots\left(\xi-\alpha_{t}\right)^{n_{t}} \tag{4.4}\\
F^{(k)}(\xi)-\frac{1}{(\alpha+\xi)^{l}}=\frac{b\left(\xi-\beta_{1}\right)^{m_{1}}\left(\xi-\beta_{2}\right)^{m_{2}} \ldots\left(\xi-\beta_{s}\right)^{m_{s}}}{(\alpha+\xi)^{l}} \tag{4.5}
\end{gather*}
$$

where a, b are two nonzero constants, and $n_{i} \geq m, m_{j} \geq n$ are both positive integers for $i=1,2, \ldots, t, j=1,2, \ldots, s$. Set $N=\operatorname{deg} F$, then

$$
\begin{equation*}
N=n_{1}+n_{2}+\ldots+n_{t} \tag{4.6}
\end{equation*}
$$

and

$$
\begin{equation*}
m_{1}+m_{2}+\ldots+m_{s}=N+l-k \tag{4.7}
\end{equation*}
$$

If $\alpha_{i}=\beta_{j}$, then $F\left(\beta_{j}\right)=0$, since $F(\xi)$ has zeros only of multiplicity at least m, we have $F^{(k)}\left(\beta_{j}\right)=0$. Thus, from(4.5) we have $1 /\left(\alpha+\beta_{j}\right)^{l}=0$, which is impossible. Therefore, $\alpha_{i} \neq \beta_{j}$ for $i=1,2, \ldots, t, j=1,2, \ldots, s$.

From (4.5), we have

$$
(\alpha+\xi)^{l} F^{(k)}(\xi)-1=b\left(\xi-\beta_{1}\right)^{m_{1}}\left(\xi-\beta_{2}\right)^{m_{2}} \ldots\left(\xi-\beta_{s}\right)^{m_{s}}
$$

Hence

$$
\begin{equation*}
l(\alpha+\xi)^{l-1} F^{(k)}(\xi)+(\alpha+\xi)^{l} F^{(k+1)}(\xi)=\left(\xi-\beta_{1}\right)^{m_{1}-1} \ldots\left(\xi-\beta_{s}\right)^{m_{s}-1} g(\xi) \tag{4.8}
\end{equation*}
$$

where $g(\xi)$ is a polynomial of $\operatorname{deg} g=s-1$.
Since $-\alpha, \alpha_{i}$ are both the zeros of left side of (4.8) of multiplicity $l-1, n_{i}-$ $(k+1)$ for $i=1,2, \ldots, s$. From (4.8), we have $-\alpha, \alpha_{i}$ are both the zeros of $g(\xi)$ of multiplicity $l-1, n_{i}-(k+1)$ for $i=1,2, \ldots, s$. Thus

$$
l-1+N-(k+1) t \leq s-1
$$

So

$$
\begin{equation*}
N \leq(k+1) t+s-l \leq \frac{k+1}{m} N+\frac{N+l-k}{n}-l \tag{4.9}
\end{equation*}
$$

From(4.9), we have

$$
\left(1-\frac{k+1}{m}-\frac{1}{n}\right) N \leq-\left(\frac{k-l}{n}+l\right)
$$

This is a contradiction. Thus, we have proved that \mathcal{F} is normal in Δ. Theorem 3 is proved.

5 Acknowledgement

The authors thank Prof. Y. Xu for his useful suggestions and discussions. The authors also thank the referee for his/her thorough reviewing with useful suggestions and comments to the paper.

References

[1] W. Bergweiler,Normality and exceptional values of derivatives, Proc. Amer. Math. Soc. 129(1)(2000), 121-129.
[2] M. L. Fang, Criteria for normality of a family of meromorphic functions,Acta Mathematica Sinica, 37(1)(1994), 86-90.
[3] M. L. Fang and J. M. Chang, Normal families and multiple values, Arch. Math. 88(2007),560-568.
[4] J. Grael and S. Nevo, On a result of Singh and Singh concerning shared values and normality, Complex Var.Elliptic Equ. 55(4)(2010),347-356.
[5] Y. X. Gu, A normal criterion of meromorphic families, Sci. Sinica, Math. Issue I(1979), 267-274.
[6] W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
[7] W. K. Hayman, Research problems in function theory, Athlone Press, London, 1967.
[8] C. L. Lei and M. L. Fang, Normality and shared values concerning differential polynomial, Sci.China Math. 53(2010), 749-754.
[9] C. Miranda, Sur un nouveau critère de normalité pour les families de fonctions holomorphes, Bull. Soc. Math. France 63(1935), 185-196.
[10] X. C. Pang and L.Zalcman, Normal families of meromorphic functions with multiple zeros and poles, Israel J.Math.136(2003), 1-9.
[11] X. C. Pang, D. G. Yang and L. Zalcman, Normal families and omitted functions, Indianna Univ. Math. J, 54(1)(2005), 223-235.
[12] X. C. Pang and L. Zalcman, Normal families and shared values, Bull.London Math.Soc. 32(2000),325-331.
[13] J. Schiff, Normal Families,Springer-Verlag, New York/Berlin,1993.
[14] J. Y. Xia and Y. Xu, Normal families of meromorphic functions with multiple values, J. Math. Anal. Appl.354(2009), 387-393.
[15] Y. Xu, Normal families and exceptional functions, J.Math. Anal. Appl. 329(2007), 1343-1354.
[16] Y. Xu , On a result due to Yang and Schwick (in Chinese), Sci Sin Math 40(5)(2010), 421-428.
[17] L. Yang, Value distribution theory, Springer-Verlag \& Science Press, Berlin,1993.
[18] Q. C. Zhang, Some normality criteria of meromorphic functions, Complex Var.Elliptic Equ. 53(2008), 791-795.

Department of Mathematics, Nanjing Normal University
Nanjing 210046, P.R.China
E-mail: zzlljj210@163.com,wuxiangzhong1986@126.com

[^0]: *Supported by the Foundation for Innovative program of Jiangsu province: CXLX12_0387.
 Received by the editors July 2011.
 Communicated by F. Brackx.
 2000 Mathematics Subject Classification : 30D35; 30D45.
 Key words and phrases : holomorphic functions, normal family, multiplicity.

