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Abstract

In this paper, we prove that if (M, g) is a closed orientable Riemannian
manifold with a transversely oriented harmonic g-Riemannian foliation of
codimension q on M and if there exists a parallel basic 2-form on M and a
positive constant k such that the transversal Ricci curvature satisfies
Ric∇(Z, Z) ≥ k(q − 1)|Z|2 for every transverse vector field Z, then the small-
est nonzero eigenvalue λB of the basic Laplacian ∆B satisfies λB ≥ 2k(q − 1).

1 Introduction

In [1] the authors gave a foliated version of Lichnerowicz and Obata theorems.
They proved that if M is a closed Riemannian manifold with a Riemannian foli-
ation of codimension q, and if the normal Ricci curvature satisfies Ric⊥(X, X) ≥
a(q − 1)|X|2 for every X in the normal bundle for some fixed a > 0, then the
smallest eigenvalue λB of the basic Laplacian satisfies λB ≥ aq. In this paper, we
assume that the manifold is endowed with a nontrivial parallel basic 2-form, and
we give a new estimation of the first non zero eigenvalue of the basic Laplacian.
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2 Preliminaries

Let (M, g) be a Riemannian manifold of dimension n with a foliation F of codi-
mension q. The foliation is given by an integrable sub-bundle L of the tangent
bundle TM over M. Let L⊥ indicates the orthogonal complement bundle of L
and π : TM −→ L⊥ the projection of TM on L⊥ parallel to L. In what follows,
for any sub-bundle E of TM we denote by ΓE the space of sections of E.

Let ∇M be the Riemannian connection on (M, g). We can define an adapted
connection ∇ on L⊥ by the following:

∇XZ =

{

π([X, Z]) if X ∈ Γ(L)
π(∇M

X Z) if X ∈ Γ(L⊥)

for any Z ∈ Γ(L⊥).
Let X, Y ∈ ΓTM, the torsion T∇ of ∇ is given by

T∇(X, Y) = ∇Xπ(Y) −∇Yπ(X)− π([X, Y]),

and the curvature R∇ of ∇ is defined by

R∇(X, Y) = ∇X∇Y −∇Y∇X −∇[X,Y].

We know that T∇ = 0 and R∇(X, Y) = 0 for X, Y ∈ ΓL (see [7]).

A local orthonormal frame (Ei)0≤i≤n of TM is adapted with respect to the
foliation F if Ei ∈ Γ(L) for 0 ≤ i ≤ p, and Ei ∈ Γ(L⊥) for p + 1 ≤ i ≤ n where
p = n − q is the dimension of F .

The tension field τ of the foliation F is given by τ = π(
p

∑
i=1

∇M
Ei

Ei).

Let Y, Z ∈ Γ(E⊥), the transversal Ricci operator and the transversal Ricci cur-
vature are defined respectively by

ρ∇(Z) =
n

∑
i=p+1

R∇(Z, Ei)Ei, Ric∇(Z, Y) = g(ρ∇(Z), Y).

The transversal divergence operator is given by

div∇Z =
n

∑
i=p+1

g(∇Ei
Z, Ei) =

n

∑
i=p+1

g(∇M
Ei

Z, Ei).

If divM is the standard divergence operator, then we have

divMZ = div∇Z − g(τ, Z).

The foliation F is harmonic if all the leaves of F are minimal submanifolds of M,
that is τ = 0 [7]. The foliation F is g-Riemannian if it is bundle like with respect
to the metric g, that is (∇Xg)(Y, Z) = 0 for X ∈ Γ(L) and Y, Z ∈ Γ(L⊥). The
set V⊥(F ) = {Z ∈ ΓL⊥/∇XZ = π[X, Z] = 0 for all X ∈ ΓL} is called the space
of transverse fields. The set of basic forms is defined by

Ω∗
B(F ) = {ω ∈ Ω∗(M)/iX ω = 0, LXω = 0 for all X ∈ ΓL}.



Lichnerowicz inequality on foliated manifold with a parallel 2-form 231

It’s an easy task to show that Z ∈ V⊥(F ) if and only if ω = iZg ∈ Ω1
B(F ). So

V⊥(F ) is isomorph to Ω1
B(F ).

A form ω ∈ Ω∗
B(F ) is parallel if ∇Xω = 0 for all X ∈ ΓL⊥. The exterior

differential d restricts to dB : Ω∗
B(F ) −→ Ω∗+1

B (F ). The adjoint of dB, with respect
to the induced scalar product 〈., .〉B on Ω∗

B(F ) is denoted by δB : Ω∗
B(F ) −→

Ω∗−1
B (F ) and we have the basic Laplacian

∆B = δBdB + dBδB.

For a transversely oriented harmonic g-Riemannian foliation F , it follows from
[2] and [3] that δB is given on ω ∈ Ω1

B(F ) by the formula

δBω = −
n

∑
i=p+1

(∇Ei
ω)Ei

which gives the Bochner-Weitzenbock formula

∆Bω = −trB∇
2ω + ρ∇(ω), (2.1)

where trB∇
2 =

n

∑
i=p+1

∇2
Ei,Ei

3 Some computational results.

In the following, for Z ∈ ΓL⊥ , we denote by AZ the endomorphism of ΓL⊥ de-
fined by AZ(Y) = ∇YZ.

Proposition 1. Let Z ∈ V⊥(F ) and α ∈ Ω2
B(F ). Let Θ be the endomorphism of ΓL⊥

associated to α with respect to the metric g. If α is parallel, then we have

n

∑
i=p+1

∇Ei
(AZ ◦ Θ)(Ei) =

1

2

n

∑
i=p+1

R(Ei, Θ(Ei))Z. (3.2)

Proof. Since Θ is antisymmetric with respect to g, we have

n

∑
i=p+1

∇2
Ei,Θ(Ei)

Z =
n

∑
i,j=p+1

g(Θ(Ei), Ej)∇
2
Ei,Ej

Z

−
n

∑
i,j=p+1

g(Θ(Ej), Ei)∇
2
Ei,Ej

Z

= −
n

∑
j=p+1

∇2
Θ(Ej),Ej

Z.

Furthermore Θ is parallel with respect to the connection ∇, hence

n

∑
i=p+1

∇Ei
(AZ ◦ Θ)(Ei) =

n

∑
i=p+1

∇Ei
(AZ)Θ(Ei) =

n

∑
i=p+1

∇2
Ei,Θ(Ei)

Z.

= 1
2(

n

∑
i=p+1

∇2
Ei,Θ(Ei)

Z −
n

∑
i=p+1

∇2
Θ(Ei),Ei

Z)

= 1
2

n

∑
i=p+1

R(Ei, Θ(Ei))Z,

and we get the desired equality.
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In the next, we assume that F is g-Riemannian and we use the following spe-
cial (orthonormal) moving frames on M. For x ∈ M, let {ei}

n
i=1 ⊂ Tx M be an

(oriented) orthonormal basis with {ei}
p
i=1 ⊂ Lx and {ei}

n
i=p+1 ⊂ L⊥

x . Let U be a

distinguished (flat) neighborhood of x for F with local (Riemannian) submersion
f : U −→ N (N is a Riemannian manifold of dimension q). For i = p + 1, ..., n,
let Ei ∈ Γ(U, L) be the pull back of the extension of f∗ei to a vector field on N
by parallel transport along geodesic segments emanating from f (x) (use [6] Prop
4.2). Then, we complete {Ei}

n
i=p+1 by the Gram-Schmidt process to a moving

frame {Ei}
n
i=1 by adding Ei ∈ Γ(U, L) with (Ei)x = ei, i = 1, ..., p. We have then

for i, j = p + 1, ..., n:
∇ei

Ej = (∇Ei
Ej)x = 0. (3.3)

Proposition 2. Under the assumptions of proposition 1, we have

|Θ ◦ AZ|
2 = g(trB∇

2Z, Θ2(Z)) − div∇A∗
Z ◦ Θ2(Z) (3.4)

Proof. Let x ∈ M, we use the under orthonormal frame. Since Z ∈ V⊥(F ), we
have AZ(Ek) = 0 for k = 1, ..., p, hence

|Θ ◦ AZ|
2 =

n

∑
k=p+1

g(Θ ◦ AZ(Ek), Θ ◦ AZ(Ek))

=
n

∑
i,k=p+1

g(AZ(Ek), Ei)g(Θ(Ei), Θ ◦ AZ(Ek))

= S + T,

where

S =
n

∑
i,k=p+1

Ek.(g(Z, Ei)g(Θ(Ei), Θ ◦ AZ(Ek)))

and

T = −
n

∑
i,j,k=p+1

(g(Z, Ei)Ek.(g(∇Ek
Z, Ej)g(Θ(Ei), Θ(Ej))).

Observe that at the point x, we have

S =
n

∑
k=p+1

Ek.g(Θ(Z), Θ ◦ AZ(Ek))

= −
n

∑
k=p+1

Ek.g(A∗
Z ◦ Θ2(Z), Ek)

= −div∇(A∗
Z ◦ Θ2(Z)),

and since Θ is parallel, we get

T = −
n

∑
i,j,k=p+1

g(Z, Ei)(g(∇Ek
∇Ek

Z, Ej)g
(

Θ(Ei), Θ(Ej)
)

= g
(

trB∇
2Z, Θ2(Z)

)

.

Hence the statement of the proposition follows.
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Proposition 3. Under the assumptions of proposition 1, we have

tr(Θ ◦ A∗
Z ◦ Θ ◦ AZ) = g

(

ρ∇(Z), Θ2(Z)
)

(3.5)

+ div∇Θ ◦ A∗
Z ◦ Θ(Z).

Proof. First we have

tr(Θ ◦ A∗
Z ◦ Θ ◦ AZ) =

n

∑
k=p+1

g(Θ ◦ A∗
Z ◦ Θ ◦ AZ(Ek), Ek)

=
n

∑
i,k=p+1

g(AZ(Ek), Ei)g(Θ ◦ A∗
Z ◦ Θ(Ei), Ek)

= P + Q,

with

P =
n

∑
i,k=p+1

Ek.(g(Z, Ei)g(Θ ◦ A∗
Z ◦ Θ(Ei), Ek))

=
n

∑
k=p+1

Ek.g(Θ ◦ A∗
Z ◦ Θ(Z), Ek))

= div∇Θ ◦ A∗
Z ◦ Θ(Z),

and

Q = −
n

∑
i,k=p+1

g(Z, Ei)Ek.g(Θ ◦ A∗
Z ◦ Θ(Ei), Ek))

= −
n

∑
i,j,k=p+1

g(Z, Ei)Ek.
(

g(Θ(Ei), Ej)g(Θ ◦ A∗
Z(Ej), Ek)

)

=
n

∑
i,j,k=p+1

g(Z, Ei)Ek.
(

g(Θ(Ei), Ej)g(A∗
Z(Ej), Θ(Ek))

)

=
n

∑
i,j,k=p+1

g(Z, Ei)Ek.
(

g(Θ(Ei), Ej)g(Ej, AZ ◦ Θ(Ek))
)

=
n

∑
i,j,k,l=p+1

g(Z, Ei)Ek.
(

g(Θ(Ei), Ej)g(AZ(El), Ej)g(Θ(Ek), El)
)

=
n

∑
i,j,k=p+1

g(Z, Ei)Ek.
(

g(AZ ◦ Θ(Ek), Ej)g(Θ(Ei), Ej)
)

=
n

∑
i,j,k=p+1

g(Z, Ei)g(∇Ek
(AZ ◦ Θ)(Ek), Ej)g(Θ(Ei), Ej)

= 1
2

n

∑
k=p+1

g(R(Ek , Θ(Ek))Z, Θ(Z)),

where we use the formula (3.2) in the last equality.
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Now, under the first Bianchi identity and by the vertu of both antisymmetry
and parallelism of Θ we have

n

∑
k=p+1

R(Ek, Θ(Ek))Z = 2
n

∑
k=p+1

R(Ek , Z)Θ(Ek)

= 2Θ(
n

∑
k=p+1

R(Ek , Z)Ek) = −2Θ(ρ∇(Z)).

This completes the proof.

Proposition 4. Under the assumptions of proposition 1, we have

g(trB∇
2Z + ρ∇(Z), Θ2(Z)) ≥ div∇Θ ◦ A∗

Z ◦ Θ(Z) (3.6)

− div∇A∗
Z ◦ Θ2(Z)

g
(

ρ∇(Z), Θ2(Z)
)

= −Ric∇(Θ(Z), Θ(Z)) (3.7)

Proof. i) By straightforward calculation, we have

n

∑
i,j=p+1

(

g(Θ ◦ AZ(Ei), Ej) + g(Θ ◦ AZ(Ej), Ei)
)2

= |Θ ◦ AZ|
2

+ tr(Θ ◦ A∗
Z ◦ Θ ◦ AZ).

So the relation (3.6) follows from equations (3.4) and (3.5).

ii) Since Θ is parallel antisymmetric,

g
(

ρ∇(Z), Θ2(Z)
)

= −
n

∑
k=p+1

g
(

Θ(R(Z, Ek)Ek), Θ(Z)
)

= −
n

∑
k=p+1

g
(

R(Z, Ek)Θ(Ek), Θ(Z)
)

= −
n

∑
k=p+1

g
(

R(Θ(Ek), Θ(Z))Z, Ek

)

=
n

∑
k=p+1

g
(

R(Ek , Θ(Z))Z, Θ(Ek)
)

= −
n

∑
k=p+1

g
(

Θ(R(Ek , Θ(Z))Z, Ek

)

= −Ric∇(Θ(Z), Θ(Z)).

and the proof is complete

Remark 5. We know that LZ = ∇Z − AZ. If ∇α = 0 and LZα = 0, then Θ ◦ AZ is
symmetric. If furthermore ω = iZg is closed, then Θ ◦ AZ = −AZ ◦ Θ.
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4 The main theorem.

Let Ω0(M) be the space of smooth functions on M. The set of smooth basic func-
tion is given by Ω0

B(F ) = { f ∈ Ω0(M)/X. f = 0 for all X ∈ ΓL}. The basic
Laplacian ∆B acting on f ∈ Ω0

B(F ) is given by ∆B f = δBdB f . For a harmonic
g-Riemannian foliation we have ∆B f ∈ Ω0

B(F ).

Theorem 6. Let (M,g) be a closed orientable Riemannian manifold and let F be a trans-
versely oriented harmonic g-Riemannian foliation of codimension q on M. Suppose that
there exists a nontrivial parallel 2-form α ∈ Ω2

B(F ) and a positive constant k such
that the transversal Ricci curvature satisfies Ric∇(Z, Z) ≥ k(q − 1)|Z|2 for every
Z ∈ V⊥(F ). Then the smallest nonzero eigenvalue λB of the basic Laplacian ∆B sat-
isfies

λB ≥ 2k(q − 1).

Proof. Let Z ∈ V⊥(F ) and ω = iZg. Let Θ be the endomorphism of ΓL⊥ associ-
ated to α. By formula (2.1) and (3.7) we have

g(tr∇2
BZ + ρ∇Z, Θ2(Z)) = trB∇

2ω(Θ2(Z)) − Ric∇(Θ(Z), B(Z))

≤ −∆Bω(Θ2(Z)) − 2k(q − 1)|Θ(Z)|2 . (4.8)

Since F is harmonic, by integrating the inequality (3.6) over M and by taking into
account the inequality (4.8) we get

∫

M
(−∆Bω(Θ2(Z)) − 2k(q − 1)|Θ(Z)|2)dM ≥ 0. (4.9)

Let f be an eigenfunction of ∆B with eigenvalue λB > 0 and let Z = ∇ f be the
gradient of f . Since ∆BdB f = dB∆B f = λBdB f , hence from the inequality (4.9) we
obtain

(

λB − 2k(q − 1)
)

∫

M
|Θ(∇ f )|2dM ≥ 0.

and the theorem follows.

Let ξ ∈ V⊥(F ). We recall that ξ is a transverse Killing field if Lξ g(Y, Z) = 0

for all Y, Z ∈ ΓL⊥. Since Lξ g(Y, Z) = g(Aξ(Y), Z) + g((Y, Aξ(Z)), we have

Corollary 7. Let (M,g) be a closed Riemannian manifold and let F be a harmonic g-
Riemannian foliation of codimension q on M. Suppose that there exists a nontrivial
transverse Killing field ξ ∈ V⊥(F ) such that ∇2ξ = 0 and a positive constant k such
that the transversal Ricci curvature satisfies Ric∇(Z, Z) ≥ k(q − 1)|Z|2 for every Z ∈
V⊥(F ). Then the smallest nonzero eigenvalue λB of the basic Laplacian ∆B satisfies

λB ≥ 2k(q − 1).

Corollary 8. Let (M,g) be a closed Riemannian manifold and let F be a harmonic g-
Riemannian foliation of codimension q ≥ 3 on M. Suppose that there exists a positive
constant k such that the transversal Ricci curvature satisfies Ric∇(Z, Z) ≥ k(q− 1)|Z|2

for every Z ∈ V⊥(F ). If the smallest nonzero eigenvalue λB of the basic Laplacian ∆B

satisfies
kq ≤ λB < 2k(q − 1),

then any parallel 2-form α ∈ Ω2
B(F ) is trivial. In particular any transverse Killing field

ξ on M which satisfies ∇2ξ = 0 is trivial.
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Remark 9. If q = 2, then kq = 2k(q − 1), ie our estimation coincides with that in [1].

Example 10. Let (M1, g1,F1) be a g1-Riemannian harmonic foliation of codimension
two on closed Riemannian manifold. There exists a basic function λ such that Ric∇1 =
λg1 on M. Suppose that the transversal Ricci curvature Ric∇1 > 0. So the first non zero
eigenvalue of the basic Laplacian satisfies λ1

B ≥ 2k where k > 0 is the minimum of the
function λ. Let ν1 = E∗

p+1 ∧ E∗
p+2 be the transversal volume form of F1. The form ν1 is

basic parallel. In fact let X ∈ Γ(L1), so

(LXν1)(Ep+1, Ep+2) = X.ν1(Ep+1, Ep+2)− ν1([X, Ep+1], Ep+2)
− ν1(Ep+1, [X, Ep+2])
= −g1([X, Ep+1], Ep+1)− g1, [X, Ep+2], (Ep+2)

= − 1
2((∇

1
X g1)(Ep+1, Ep+1) + (∇1

X g1)(Ep+2, Ep+2)) = 0,

because F is g1-Riemannian. Now let Z ∈ Γ(L⊥
1 ) so

(∇Zν1)(Ep+1, Ep+2) = −ν(∇M1
Z Ep+1, Ep+2)− ν1(Ep+1,∇M1

Z Ep+2)

= −g1(∇
M1
Z Ep+1, Ep+1)− g1(∇

M1
Z Ep+2, Ep+2) = 0.

Now let (M2, g2,F2) be an other g2-Riemannian harmonic foliation of codimension
q − 2 ≥ 1 with a transversal Ricci curvature Ric∇2 ≥ kg2 (for example, take F2 a
transversely elliptic foliation). The product foliation F = F1 ×F2 on M = M1 × M2

is also g1 × g2-Riemannian harmonic of codimension q with transversal Ricci curvature
Ric∇ ≥ k(g1 × g2). By the new estimation the smallest non zero eigenvalue of the basic
Laplacian satisfies λB ≥ 2k. Whereas the estimation given in [1] is λB ≥

q
q−1k.

Example 11. Assume that F is a Kähler foliation (see [4]). That is
i) F is g-Riemannian, i.e. ∇g = 0, ii) there is a holonomy invariant almost com-
plex structure J : L⊥ −→ L⊥, where dim L⊥ = q = 2m (real dimension), with re-
spect to which the metric g is transversely Hermitian, i.e. g(JX, JY) = g(X, Y) for
X, Y ∈ Γ(L⊥), iii) ∇ is almost complex structure, i.e. ∇J = 0. Note that α(X, Y) =
g(X, JY) for X, Y ∈ Γ(L⊥) and iξα = 0 for ξ ∈ ΓL defines a basic 2-form α, which is
closed as a consequence of ∇g = 0 and ∇J = 0.

Clearly αm 6= 0 at all points of M. Let f ∈ Ω0
B(F ); in the one hand L∇ f αm =

∆B f .αm and in the other hand L∇ f αm = mL∇ f α ∧ αm−1. Consequently L∇ f α =
1
m ∆B f .α. We deduce that

i) ∇ f is a transversal Kähler field (L∇ f α = 0) if and only if the function f is har-
monic. In this case J ◦ A∇ f = −A∇ f ◦ J. Let x ∈ M; since (A∇ f )x is diagonalisable
and Jx is antisymmetric anti-commuting with (A∇ f )x, hence (A∇ f )x is of even rang.

ii) ∇ f is a transversal Liouville field (L∇ f α = α) if and only if ∆B f = m.

Let χF be the characteristic form of F and let ∗̄ : Ωr
B(F ) −→ Ω

q−r
B (F ) be the transver-

sal star operator, we have

∗̄L∇ f =
1

m
∇B f . ∧ αm−1, ‖L∇ f ‖

2
Ω∗

B(F ) =
∫

M
L∇ f ∧ ∗̄L∇ f ∧ χF =

‖∆B f‖2
2

m2
.

We deduce that if F is a harmonic Kähler foliation of codimension q on a closed manifold
such that Ric∇ ≥ k(q − 1) and if f is an eigenfunction of ∆B, then ‖L∇ f ‖Ω∗

B(F ) ≥
4k(q−1)

q ‖ f‖2.
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Now we give an example of a harmonic Kähler foliation with constant sectional cur-
vature see [5] page 273. Let PmC be the complex projective space. This is the quotient of

the Euclidian sphere S2m+1 under the canonical S1-action. We obtain the Hopf fibration

S1 → S2m+1 → PmC = SU(m + 1)/S(U(1)× U(m)),

which gives rice naturally to a harmonic (and totally geodesic) Kähler (and symmet-

ric) foliation on S2m+1. The transversal holomorphic sectional curvature is 4; therefore

Ric∇ = 4q and k = 4q
q−1 . By the new estimation the smallest non zero eigenvalue of the

basic Laplacian satisfies λB ≥ 8q. Whereas the estimation given in [1] is λB ≥
4q2

q−1 .

We end the paper by the following question. If in Theorem 6 the equality
occurs, is the leaf space isometric to the space of orbit of a discrete subgroup of
O(q − 2)× O(2) acting on the standard product (q − 2)-sphere with 2-sphere of
constant curvature k?
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