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Abstract

In this paper, under an appropriated restriction on the Gauss map, we ob-
tain an extension of the Xin-Aiyama theorem concerning to complete space-
like hypersurfaces immersed with bounded mean curvature in the Minkowski
space.

1 Introduction

In the last years, the study of spacelike hypersurfaces in the Minkowski space
L

n+1 has been of substantial interest from both the physical and mathematical
aspects. From a physical point of view, that interest is motivated by their role in
the study of different problems in general relativity. From a mathematical point
of view, that interest is also motivated by the fact that these hypersurfaces exhibit
nice Bernstein-type properties. For example, Y.L. Xin in [6] and R. Aiyama in [1]
simultaneous and independently characterized the spacelike hyperplanes as the
only complete constant mean curvature spacelike hypersurfaces in L

n+1 having
the image of its Gauss map contained in a geodesic ball of the hyperbolic space
(see also [5] for a weaker first version of this result given by B. Palmer).
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In this paper we are concerning to complete spacelike hypersurfaces immersed
with bounded mean curvature in L

n+1 and whose Gauss map N is future-directed
on L

n+1 (cf. Section 2). In this setting, under an appropriate restriction on the hy-
perbolic image N(Σ) and as a suitable application of the well know generalized
Maximum Principle of Omori-Yau, we obtain the following extension of the Xin-
Aiyama theorem:

Theorem 1.1. Let ψ : Σn → L
n+1 be a complete spacelike hypersurface bounded away

from the past infinite of L
n+1 and with bounded mean curvature H ≥ 0. If the hyperbolic

image of Σn is contained in the closure of a geodesic ball of center en+1 ∈ H
n and whose

radius ̺ satisfies cosh ̺ ≤ 1 + infΣ H, then Σn is a spacelike hyperplane.

Finally, we want to point out that our restriction on the Gauss map of the
spacelike hypersurface is motivated by the fact that the hyperbolic caps of L

n+1

satisfy such condition (see Remark 3.1).

2 Complete Spacelike Hypersurfaces in L
n+1

Let L
n+1 denote the (n+ 1)-dimensional Minkowski space, that is, the real vector

space R
n+1, endowed with the Lorentz metric

〈v, w〉 =
n

∑
i=1

viwi − vn+1wn+1,

for all v, w ∈ R
n+1.

A smooth immersion ψ : Σn → L
n+1 of an n-dimensional connected manifold

Σn is said to be a spacelike hypersurface if the induced metric via ψ is a Riemannian
metric on Σn, which, as usual, is also denoted by 〈, 〉.

Observe that en+1 = (0, . . . , 0, 1) is a unit timelike vector field globally defined
on L

n+1, which determines a time-orientation on L
n+1. Thus we can choose a

unique timelike unit normal vector field N on Σn which is future-directed on L
n+1

(i.e., 〈N, en+1〉 ≤ −1), and hence we may assume that Σn is oriented by N. We
also note that such timelike unit normal vector field N ∈ X(Σ) can be regarded
as the Gauss map N : Σn → H

n of Σn, where H
n denotes the n-dimensional

hyperbolic space, that is,

H
n = {x ∈ L

n+1; 〈x, x〉 = −1, xn+1 ≥ 1}.

In this setting, the image N(Σ) is called the hyperbolic image of Σn. Furthermore,
given a geodesic ball B(a, ̺) in H

n of radius ̺ > 0 and centered at a point a ∈ H
n,

we recall that B(a, ̺) is characterized as the following

B(a, ̺) = {p ∈ H
n;− cosh ̺ ≤ 〈p, a〉 ≤ −1}.

So, if the hyperbolic image of Σn is contained into some B(a, ̺), then

1 ≤ |〈N, a〉| ≤ cosh ̺.
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Now, let A be the shape operator of Σn in L
n+1 associated to the Gauss map N

of Σn future-directed on L
n+1. In order to set up the notation to be used later, let

us denote by ∇ and ∇ the Levi-Civita connections of L
n+1 and Σn, respectively.

Then, the Gauss and Weingarten formulas for Σn in L
n+1 are written, respectively,

as
∇XY = ∇XY − 〈AX, Y〉N,

and
A(X) = −∇X N,

for all tangent vector fields X, Y ∈ X(Σ).
On the other hand, as in [4], the curvature tensor R of the spacelike hypersur-

face Σn is given by

R(X, Y)Z = ∇[X,Y]Z − [∇X,∇Y]Z,

where [ ] denotes the Lie bracket and X, Y, Z ∈ X(Σ).
A fact well known is that the curvature tensor R of the spacelike hypersurface

Σn can be described in terms of the shape operator A by the so-called Gauss
equation given by

R(X, Y)Z = −〈AX, Z〉AY + 〈AY, Z〉AX,

for every tangent vector fields X, Y, Z ∈ X(Σ). Consequently, the Ricci curvature
tensor RicΣ of Σn is given by

RicΣ(X, X) = nH〈AX, X〉 + 〈AX, AX〉

=

∣

∣

∣

∣

AX +
nH

2
X

∣

∣

∣

∣

2

−
n2H2

4
|X|2,

where H = − 1
n tr(A) is the mean curvature of Σn.

In what follows, ψ : Σn → L
n+1 denotes a complete spacelike hypersurface,

with Gauss map N future-directed on L
n+1. In this context, according to the

terminology established in [2], we say that Σn is bounded away from the past infinity
of L

n+1 if the height function h : Σn → R, defined by h(p) = 〈ψ(p), en+1〉, is
bounded from below on Σn.

In order to prove our result, we will need the generalized Maximum Principle
due to H. Omori and S.T. Yau [3, 7].

Lemma 2.1. Let Σn be an n-dimensional complete Riemannian manifold whose Ricci
curvature is bounded from below and u : Σn → R be a smooth function which is bounded
from below on Σn. Then there is a sequence of points {pk} in Σn such that

lim
k→∞

u(pk) = inf
Σ

u, lim
k→∞

|∇u(pk)| = 0 and lim
k→∞

∆u(pk) ≥ 0.
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3 Proof of Theorem 1.1

Let us consider the height function h = 〈ψ, en+1〉 defined on Σn. We have that

∇h = e⊤n+1 = en+1 + 〈N, en+1〉N,

where e⊤n+1 ∈ X(Σ) denotes the tangential component of en+1 in Σn. Conse-
quently, from the Gauss and Weingarten formulas, the Hessian of h is given by

∇2h(X, Y) = 〈∇Xe⊤n+1, Y〉 = −〈N, en+1〉〈AX, Y〉,

for all X, Y ∈ X(Σ). Thus, the Laplacian of h is

∆h = −〈N, en+1〉tr(A) = nH〈N, en+1〉.

On the other hand, from the previous section, the Ricci curvature of Σn is such
that

RicΣ ≥ −
n2H2

4
.

Consequently, since we are supposing that 0 ≤ H ≤ α for some constant α, we
get

RicΣ ≥ −
n2α2

4
,

that is, RicΣ is bounded from below on Σn. Thus, since Σn is supposed to be
bounded away from the past infinite of L

n+1, we are in position to apply Lemma 2.1
to the height function h, obtaining a sequence {pk} in Σn such that

lim
k→∞

∆h(pk) ≥ 0.

Consequently, from the boundedness on Σn of the functions H and 〈N, en+1〉, we
get a subsequence {pkj

} of {pk} such that

0 ≤ lim
j→∞

∆h(pkj
) ≤ −n lim

j→∞
H(pkj

) ≤ 0.

Then, lim
j→∞

H(pkj
) = 0, and inf

Σ
H = 0. Thus, since we are supposing that N(Σ) ⊂

B(en+1, ̺) with cosh ̺ ≤ 1 + infΣ H, we conclude that

1 ≤ |〈N, en+1〉| ≤ cosh ̺ ≤ 1,

that is, 〈N, en+1〉 = −1 on Σn. Therefore, Σn is a spacelike hyperplane.

Remark 3.1. Fixed a positive constant λ, we easily verify that the hyperbolic cap

Σn
λ =

{

x ∈ L
n+1; 〈x, x〉 = −λ2, λ ≤ xn+1 ≤

√

1 + λ2
}

is an example of spacelike hypersurface of the Lorentz-Minkowski space L
n+1

which has constant mean curvature

Hλ =
1

λ
> 0,
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if we choose the Gauss map N future-direct on L
n+1. Moreover, we also easily

verify that the hyperbolic image N(Σλ) is contained in the closure of the geodesic
ball of center en+1 ∈ H

n and with radius ̺ satisfying

cosh ̺ =

√

1 +
1

λ2
≤ 1 + Hλ.
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