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Abstract

In this paper we transfer results on embeddings of complex algebraic
curves into projective space (which are based on dimension theorems for
special divisors) to the case of real algebraic curves with real points.

1 Introduction and Terminology

Let Y be a complex algebraic curve, i.e. a smooth and irreducible projective curve
defined over C, and let g be its genus. The distribution of complete and very am-
ple linear series gr

d of degree d and (projective) dimension r on Y is only known

if they are not very special, i.e. if h1(Y, D) ≤ 1 holds for the index of speciality
of a divisor D ∈ gr

d : Y always has complete, very ample and non-special series
of dimension r for all integers r ≥ 3, and there is no complete, very ample and
special series on Y if and only if Y is hyperelliptic. More precisely, Y has a com-
plete, very ample, special but not very special linear series of dimension r (i.e.
a complete gr

g−1+r) for every integer r such that 3 ≤ r < g provided that Y is

not hyperelliptic, not bi-elliptic (i.e. not a double cover of an elliptic curve), not
trigonal and not a smooth plane quintic; this statement is a consequence of Mum-
ford’s dimension theorem for the varieties of special divisors. (Cf. [ACGH], V, Ex.
B; [CM1], 2.2 (iv); by the way, for g ≥ 6 also the converse of this statement is true).
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It is the aim of this paper to prove the corresponding very ampleness-results for
complete linear series on a real algebraic curve, i.e. on a smooth and geometri-
cally irreducible projective curve defined over R. We always assume that the real
curve has real points. (On a real curve without real points linear series are restricted
to even degree.)

Terminology: For details on real curves and the language of linear series on them
we refer to [CM 2]. Linear series are always complete in this paper. X denotes
a real (algebraic) curve of genus g, and (XC , σ) denotes the complexification of
X(σ is the anti-analytic involution on XC induced by complex conjugation ¯ on
C). If we assume that the set X(R) of real points of X (or, what is the same, of
XC) is non-empty it splits into 1 ≤ s ≤ g + 1 real components C1, . . . , Cs of X,
and we can identify the linear series gr

d on the real curve X with the σ-invariant
gr

d on the complex curve XC ([GH], section 2; [CM2], section 1). Such a ”real” gr
d

on XC defines, for r ≥ 1, a rational map ϕ : XC → PC
r which is σ-invariant (i.e.

ϕ(Pσ) = ϕ(P) for any point P ∈ XC where it is defined; this is due to the fact
that H0(XC, D) for D ∈ gr

d has a basis of real functions because (gr
d)

σ = gr
d); so ϕ

induces a map ϕ : X → Pr
R
= Proj(R[x0, . . . , xr]).

A gr
d on X is called very ample if the associated σ-invariant gr

d on XC is very
ample, i.e. if the induced map ϕ is an isomorphism onto the image curve in
Pr

C
; then ϕ identifies the real curve X with a real curve in the real projective

space Pr
R

. The very ample gr
d on X correspond to the elements of the subset

Wr
d(R)\(Wr−1

d−2 + W2)(R) of the Jacobian variety Jac(XC) of XC; here Wr
d resp.

Wr
d(R) represents the set of gr

d resp. of σ-invariant gr
d on XC. A linear series gr

d on

X belonging to the - in general larger - set Wr
d(R)\(Wr−1

d−2(R)+W2(R)) still pro-
vides a nice geometric description of X: it is easy to see that such a series is base
point free and simple (i.e. ϕ is a birational morphism from XC onto its image;
so r ≥ 2), and it has the defining two properties that the morphism ϕ separates
conjugate points of XC (i.e. ϕ(Pσ) 6= ϕ(P) for every non-real point P of XC; in
particular, the image curve ϕ(X) ⊂ Pr

R
has no isolated real points) and separates

points and tangent vectors on X(R) (so XC has its singular points outside X(R);
in particular, the real contours ϕ(C1), . . . , ϕ(Cs) of ϕ(XC) do not meet).

Note that these notions are also meaningful for a real curve without real points;
in this paper, however, we assume that X(R) 6= φ (i.e. s ≥ 1).

Example 1: There are real curves of genus 4 with a given number s, 1 ≤ s ≤ 5, of
real components and without a g1

3 ([GH], p. 178). Let X be such a curve and let
|KXC

| denote the canonical series of XC. Since |KXC
| is σ-invariant so is |KXC

− P|

for any P ∈ XC(R)= X(R); thus the ∞
1 nets g2

5 on X belong to (W1
3 + W2)(R)

but clearly not to W1
3 (R)+W2(R) = φ.

A pseudo-line for a gr
d (r ≥ 1) on X is a real component of X on which some (hence

every) divisor in this gr
d has odd degree. The number δ of pseudo-lines for a gr

d on
X obviously satisfies 0 ≤ δ ≤ Min (s, d) and δ ≡ d mod 2, and if the gr

d is special
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(i.e. r > d − g) then δ ≤ 2g − 2 − d ([H]). In particular, the canonical series |KXC
|

of XC has no pseudo-lines.

2 Non-special very ample series

We identify the real points of X with the σ-invariant points of XC. Recall that X
has s ≥ 1 real components.

Lemma 1: Let d, δ be non-negative integers such that δ ≤ Min(s, d) and δ ≡ d mod 2.
Choose δ general points P1, . . . , Pδ on real components C1, . . . , Cδ of X, respectively,

and d−δ
2 general points Q1, . . . , Q d−δ

2
in XC. Let D be the real (= σ-invariant) and ef-

fective divisor P1 + · · ·+ Pδ + (Q1 + Qσ
1) + · · ·+ (Q d−δ

2
+ Qσ

d−δ
2

) of degree d on XC.

Then dim |D| =Max(0, d − g).

Proof: Clearly, by Riemann-Roch, r := dim |D| ≥ Max (0, d − g). Our real divi-
sors D of degree d on XC form a family of real dimension at least d. Taking the
complete linear series they define we see that dimR(W

r
d(R))≥ d − r.

Let d < g. Then Max(0, d − g) = 0, and we have d − r ≤ dimR(W
r
d(R)) ≤

dim (Wr
d) ≤ d − 2r, by Martens’ dimension theorem ([ACGH], IV, 5.1). Hence

r = 0, and we are done.

Let d ≥ g, i.e. Max(0, d − g) = d − g. Assume that r > d − g. Then r > 0.
Let d′ := 2g − 2 − d , r′ := g − 1 − d + r ≥ 0. By Martens’ dimension theorem,

d − r ≤ dimR(W
r
d(R)) ≤ dim(Wr

d) = dim(κ − Wr′

d′ ) = dim(Wr′

d′ ) ≤ d′ − 2r′ =

d − 2r, again; here {κ} = W
g−1
2g−2 is the canonical point on Jac(XC) corresponding

to the canonical series |KXC
| of XC. It follows that r ≤ 0, a contradiction.

Proposition 1: Let r ≥ 3 and δ ≥ 0 be integers such that δ ≤ s and δ ≡ g + r mod 2.
Then for δ assigned real components C1, . . . , Cδ of X there is a complete and very ample
gr

g+r on X having precisely the pseudo-lines C1, . . . , Cδ.

Proof: The proof is just a straightforward modification of the proof of [CM2],
Proposition 1. Choose D as in the lemma, with d := g+ r; then dim|D| = d− g =
r. For every real divisor D′ ∈ |D| and every real component C of X we have
deg(D′|C) ≡ deg(D|C) mod 2; so, by construction of D, precisely C1, . . . , Cδ are

the pseudo-lines for |D|.

Let r ≥ 3 and assume that no such |D| is very ample. Then these series constitute

a d − r = g-dimensional subset of Jac(XC)(R) contained in (Wr−1
g+r−2 + W2)(R).

Hence dimR((W
r−1
g+r−2 + W2)(R)) ≥ g. But Wr−1

g+r−2 = κ − Wg−r has dimension

g − r (if r ≤ g; otherwise it is empty), and so we have dimR((W
r−1
g+r−2 + W2)(R))

≤ dim(Wr−1
g+r−2 + W2) ≤ (g − r) + 2 < g, a contradiction.
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For r = 2 we can, of course, only expect a weaker result:

Proposition 2: Let δ ≥ 0 be an integer such that δ ≤ s and δ ≡ g mod 2. Then for δ
assigned real components C1, . . . , Cδ of X there is a complete, base point free and simple
net g2

g+2 on X having precisely the pseudo-lines C1, . . . , Cδ. And if X is not hyperelliptic

(i.e. has no g1
2) the real plane curve obtained by this net has only points of multiplicity at

most 2.

Proof: Let W1
g × W2 → Jac(XC) be the summation map and W(g, 1) be the closed

and σ-invariant sublocus of Jac(XC) consisting of points whose fibre under this
map is not finite. Then Jac(XC)(R)\W(g, 1)(R) collects the complete, base point
free and simple nets g2

g+2 on X. Since dimR(W(g, 1)(R)) ≤ dim(W(g, 1)) <

dim(W1
g × W2) = dim(W1

g ) + 2 = dim(κ − Wg−2) + 2 = g we see that the g-

dimensional subset of Jac(XC)(R) made up by the series |D| constructed as in
the proof of Proposition 1 cannot be contained in W(g, 1)(R).

Likewise, if the image curve of the morphism defined by |D| has a singular point
of multiplicity m ≥ 3 than |D| represents a point in (W1

g+2−m + Wm)(R). But, by

Martens’ dimension theorem ([ACGH], IV, 5.1), dim(W1
g+2−m) ≤ g − 1 − m if XC

is not hyperelliptic, and then dim(W1
g+2−m + Wm) ≤ g − 1 only.

Example 2: Let δ = g (maximal) in Proposition 2. By [H], 2.7, then, the g2
g+2 on

X separates conjugate points, and its induced morphism ϕ restricts to an isomor-
phism on every real components of X. Let Γ1, . . . , Γg be the images (under ϕ) of

the g pseudo-lines C1, . . . , Cg of X. Since any two of the Γi intersect in P2
C
(R)

we have at least (g
2) such intersection points, and since the singular plane curve

ϕ(XC) cannot have more than pa(ϕ(XC))− pg(ϕ(XC)) = (g+1
2 )− g = (g

2) singu-

lar points we see that ϕ(X) ⊂ P2
R

has precisely the (g
2) points of intersection of

the real contours Γi as its singularities.

Let g ≥ 2. Since Γi ∩ Γi 6= φ for i 6= j there are points P ∈ Ci, Q ∈ Cj such that

dim |g2
g+2 − P − Q| = 1; so g2

g + 2 ∈ W1
g (R) + Ci + Cj ⊆ W1

g(R)+W2(R) but

g2
g+2 /∈ W1

g(R) + Ci + Ci for every i.

Remarks: (i) For r ≥ 3 let Wr−2
g−4+r × W4 → Jac(XC) be the summation map and

W(g− 4+ r, r− 2) be the closed and σ-invariant sublocus of Jac(XC) consisting of
points whose fibre under this map is not finite. Assume that X is not hyperelliptic.
If, then, the very ample series gr

g+r found in Proposition 1 would admit infinitely
many m-secant line divisors for some m ≥ 4 (i.e. if the curve of degree g + r
in Pr embedded by our gr

g+r would have ∞
1 quadrisecant lines) we would have

dimR(W(g − 4 + r, r − 2)(R))≥ g which implies g ≤ dim(W(g − 4 + r, r − 2) <
dim(Wr−2

g−4+r × W4) = dim(Wr−2
g−4+r) + 4 ≤ ((g − 4 + r) − 2(r − 2) − 1) + 4 =

g − r + 3, by Martens’ dimension theorem; so r ≤ 2. This contradiction shows
that our gr

g+r has only a finite number of m-secant line divisors (m ≥ 4).
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(ii) The result in (i) resp. the last statement in Proposition 2 (on singularities) are
false for hyperelliptic X since gr

g+r = |g1
2 + gr−2

g+r−2| then.

3 Special very ample series

The following lemma is well-known and due to the fact that a reduced and ir-
reducible complex curve in Pr(r ≥ 3) cannot have ∞

1 singular points resp. ∞
2

trisecant lines ([ACGH], III, ex. L).

Lemma 2: Let L = gr
d (r ≥ 3) be a base point free and simple linear series on the complex

curve XC. Then there are only finitely many points P ∈ XC such that gr−1
d−1 := |L − P|

is not both base point free and simple.

The lemma implies

Proposition 3: Let X be non-hyperelliptic and 2 ≤ r < g and δ ≥ 0 be integers such
that δ ≤ Min(s, g − 1 − r) and δ 6≡ g − r mod 2. Then for assigned δ real components
C1, . . . , Cδ of X there is a complete, base point free and simple gr

g−1+r on X having pre-

cisely the pseudo-lines C1, . . . , Cδ.

Proof: Note that the conditions on δ are necessary for δ pseudo-lines for a (com-
plete and special) gr

g−1+r on X.

Since X is not hyperelliptic so is its complexification XC. Consequently, XC has a
canonical divisor KXC

which is real and very ample, and from section 1 we know
that |KXC

| has no pseudo-lines. This proves the Proposition for r = g − 1. As-
sume that the Proposition is true for some 3 ≤ r < g; we want to prove it for
r − 1 by using Lemma 2, i.e. we want to show the existence of a base point free

and simple gr−1
g−2+r on X with δ assigned pseudo-lines C1, . . . , Cδ provided that

0 ≤ δ ≤ Min(s, g − r) and δ ≡ g − r mod 2.

If δ > 0 take a base point free and simple gr
g−1+r on X having exactly the δ − 1

pseudo-lines C1, . . . , Cδ−1; it represents a σ-invariant series on XC. By Lemma
2 we can choose a point Pδ ∈ Cδ such that |gr

g−1+r − Pδ| is a σ-invariant, base

point free and simple gr−1
g−2+r on XC. Since |KXC

− gr
g−1+r| has the pseudo-lines

C1, . . . , Cδ−1 the series |KXC
− gr

g−1+r + Pδ| and hence also its dual |gr
g−1+r − Pδ|

have the pseudo-lines C1, . . . , Cδ.

If δ = 0 (note that this implies r < g − 1) we take a base point free and simple
gr

g−1+r on X with exactly one pseudo-line C, and by Lemma 2 we can find a point

P ∈ C such that (on XC) |g
r
g−1+r − P| is base point free and simple, again. Since

this series has even degree on C we see that it has no pseudo-line.
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Corollary: Let g ≥ 5 and s ≥ 3 (s ≥ 2 suffices for odd g). Then W1
g−1(R) 6= φ.

Proof: If X is hyperelliptic we have W1
2 (R) 6= φ, and so W1

2 (R)+W1(R)+ · · · +
W1(R) (with g − 3 varieties W1(R)) is contained in W1

g−1(R), for g ≥ 3. If X is

not hyperelliptic we apply Proposition 3 with r = 2 and δ = 2 for odd g resp.
δ = 3 for even g. Then the image curve in P2

C
under the birational morphism

induced by the chosen net g2
g+1 on XC has real singular points (the points of in-

tersection of the images of the δ ≥ 2 pseudo-lines), and the projection off such
a singularity onto P1

C
given us a σ-invariant pencil of degree at most g − 1 on

XC.

Finally, for r ≥ 3 we have the

Theorem: Assume that X has no g1
3, is not a smooth plane quintic and not a double

cover of a real elliptic curve. Let 3 ≤ r < g and δ ≥ 0 be integers such that δ ≤
Min(s, g − 1− r) and δ 6≡ g− r mod 2. Then for δ assigned real components C1, . . . , Cδ

of X there is a complete and very ample gr
g−1+r on X having precisely C1, . . . , Cδ as its

pseudo-lines.

Proof: The inequality 3 ≤ r < g implies g ≥ 4, and for g = 4 we have r = 3,
i.e. gr

g−1+r is the canonical series on X, and so δ = 0. Hence we may assume

that g ≥ 5. Choose D as in Lemma 1, with d = g − 1 − r ≥ 0 there. Then
dim |D| = 0, and the series |D| form a subset of real dimension g − 1 − r in
Wg−1−r(R). Since XC has a real canonical divisor KXC

the series |KXC
− D| is a

complete and σ-invariant gr
g−1+r on XC with δ(KXC

− D) = δ(D) = δ, and since

deg((KXC
−D)|C) ≡ deg(D|C) mod 2 for every real component C of X we see

that precisely the δ assigned real components C1, . . . , Cδ of X are the pseudo-lines
for these gr

g−1+r.

The series gr
g−1+r thus constructed constitute a (g − 1 − r)-dimensional subset Z

of Wr
g−1+r(R) = (κ −Wg−1−r)(R) = κ − Wg−1−r(R). Assume that none of these

gr
g−1+r is very ample, i.e. Z ⊆ (Wr−1

g−3+r +W2)(R) = ((κ − W1
g−r+1) +W2)(R) =

κ − (W1
g−r+1 − W2)(R). Then Z′ := κ − Z is a (g − 1 − r)-dimensional subset of

Wg−1−r(R)∩(W1
g−r+1 − W2)(R)⊆ (Wg−1−r ∩ (W1

g−r+1 − W2))(R).

Claim 1: dim(W1
g−r+1) ≤ g − 3 − r for r ≥ 3.

In fact, the claim is clear provided that the complex curve XC is not hyperelliptic,
not trigonal, not bi-elliptic and not a smooth plane quintic, according to Mum-
ford’s dimension theorem ([ACGH], IV, 5.2). Assume that XC is hyperelliptic or
trigonal. Then XC has a unique g1

2 resp. a unique g1
3 (recall g ≥ 5) which - being

unique - must be σ-invariant; so X has a g1
3 which contradicts our hypotheses.

If XC is bi-elliptic and g ≥ 6 the covered elliptic curve EC is unique ([ACGH],
VIII, Ex. C - 1). Then σ moves EC into itself whence there is a real elliptic curve
E doubly covered by X whose complexification is EC. This again contradicts our



Very ample linear series on real algebraic curves 61

hypotheses. If XC is bi-elliptic and g = 5 we have r = 3 or r = 4 which implies
W1

g−r+1 = φ ([ACGH], VIII, Ex. C -1). Finally, if XC is a smooth plane quintic

(g = 6) it has a unique net g2
5 which (being unique) must be σ-invariant. Then X

is a smooth real plane quintic, a case we have excluded. This proves the claim.

Claim 2: Wg−1−r 6⊆ W1
g−r+1 − W2.

In fact, claim 1 yields dim(W1
g−r+1 − W2) ≤ g − 1 − r. Then Wg−1−r ⊆ W1

g−r+1 −

W2 would imply that there is an irreducible component Y of W1
g−r+1 of dimen-

sion g − 3 − r such that Wg−1−r = Y − W2. But since Y 6⊆ W2
g−r+1 we have

Y − W2 6⊆ Wg−1−r.

Claim 2 implies that Wg−1−r ∩ (W1
g−r+1 − W2) is properly contained in the irre-

ducible variety Wg−1−r of dimension g − 1 − r, i.e. we have g − 1 − r >

dim(Wg−1−r ∩ (W1
g−r+1 − W2)) ≥ dimR((Wg−1−r ∩ (W1

g−r+1 − W2))(R))≥

dimR(Z
′) = g − 1 − r. This contradiction shows that our assumption

Z ⊆ (Wr−1
g−3+r + W2)(R) is false.
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