On the quasi-equivalence of orthogonal bases
In non-archimedean metrizable locally convex
spaces

Wiestaw Sliwa

Abstract. We prove that any non-archimedean metrizable locally convex space
FE with a regular orthogonal basis has the quasi-equivalence property, i.e. any two
orthogonal bases in F are quasi-equivalent. In particular, the power series spaces
Ai(a) and Ax(a), the most known and important examples of non-archimedean
nuclear Fréchet spaces, have the quasi-equivalence property. We also show that the
Fréchet spaces: KN, ¢y x KN, ¢ have the quasi-equivalence property.

1 Introduction

In this paper all linear spaces are over a non-archimedean non-trivially valued field
K which is complete under the metric induced by the valuation |- | : K — [0, 00).
For fundamentals of locally convex Hausdorff spaces (lcs) and normed spaces we
refer to [9], [10] and [11]. Orthogonal bases in locally convex spaces are studied in
[4], [5], [6] and [12].

Let E be a metrizable lcs with an orthogonal basis (x,,). Clearly, for any sequence
(an) of non-zero scalars and any permutation o of N the sequence (0,Zs(,)) is an
orthogonal basis in E. It is interesting to know whether any orthogonal basis (y,,)
in F is equivalent to one of the above bases. In other words whether any two
orthogonal bases in E are quasi-equivalent. It is easy to see that it is so if F is a
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normed space with an orthogonal basis. It is not known whether any metrizable lcs
with an orthogonal basis has the quasi-equivalence property.

Developing the ideas of [8] and [7] (see also [1] and [2]) we prove that any two
regular orthogonal bases in a metrizable lcs are semi equivalent (Proposition 3),
and any two orthogonal bases in a metrizable lcs with a regular orthogonal basis
are quasi-equivalent (Theorem 5). In particular, the power series spaces A;(a) and
A (a) (see [3]) have the quasi-equivalence property (Corollary 6).

We also show that the Fréchet spaces: KN, ¢y x KN and ¢ff possess the quasi-
equivalence property (Proposition 8).

2 Preliminaries

The linear span of a subset A of a linear space E is denoted by linA.

Let E, I be locally convex spaces. A map T : E — F is called a linear homeo-
morphism if T is linear, one-to-one, surjective and the maps 7,7~ are continuous.
If there exists a linear homeomorphism 7' : £ — F, then we say that E is isomorphic
to F.

Sequences (z,,) and (y,) in a les E are equivalent if there exists a linear homeo-
morphism P between the linear spans of (x,) and (y,), such that Px, =y, for all
n € N. Sequences (x,) and (y,) in a Fréchet space E are equivalent if and only if
there exists a linear homeomorphism P between the closed linear spans of (z,) and
(Yn), such that Px, =y, for all n € N.

Sequences (x,,) and (y,,) in a les E are semi equivalent if for some sequence (a,) of
non-zero scalars the sequences (a,x,) and (y,) are equivalent, and quasi-equivalent
if for some permutation o of N the sequences (z4(,)) and (y,) are semi equivalent.

A sequence (x,) in a les E is a Schauder basis in FE if each € E can be
written uniquely as x = >°°, oz, with () C K and the coefficient functionals
fo: E—=K 2 — a,(n € N) are continuous.

By a seminorm on a linear space E we mean a function p : E — [0, 00) such
that p(ax) = |a|p(z) for all @ € K,z € E and p(x +y) < max{p(z),p(y)} for all
z,y € E. A seminorm p on F is a norm if kerp := {x € E : p(x) = 0} = {0}.

The set of all continuous seminorms on a metrizable lcs F is denoted by P(E).
A non-decreasing sequence (px) C P(E) is a base in P(FE) if for every p € P(E)
there exists k € N with p < pi. A sequence (px) of norms on FE is a base of norms
in P(F) if it is a base in P(FE).

Any metrizable lcs E possesses a base (pg) in P(FE). Every metrizable lcs E with
a continuous norm has a base (py) of norms in P(E).

A metrizable lcs E is of finite type if dim(E/kerp) < oo for any p € P(FE), and
of countable type if E contains a linearly dense countable set.

A Fréchet space is a metrizable complete lcs.

A Banach space is a normed Fréchet space. Any infinite-dimensional Banach
space of countable type is isomorphic to the Banach space ¢ of all sequences in K
converging to zero (with the sup-norm) ([10], Theorem 3.16).

Let p be a seminorm on a linear space E. A sequence (x,) C F is 1-orthogonal
with respect to p if p(>1 | aux;) = maxj<i<, p(agx;) for alln € N oy, ..., € K
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A sequence (z,,) in a metrizable lcs E is 1-orthogonal with respect to (py) C P(FE)
if (z,,) is 1-orthogonal with respect to py for any k € N.

A sequence (z,,) in a metrizable les F is orthogonal if it is 1-orthogonal with
respect to some base (px) in P(FE). A linearly dense orthogonal sequence of non-zero
elements in a metrizable lcs E is an orthogonal basis in E.

Every orthogonal basis in a metrizable lcs E is a Schauder basis in E ([5], Propo-
sition 1.4) and every Schauder basis in a Fréchet space F'is an orthogonal basis in
F ([5], Proposition 1.7).

A metrizable lcs F with an orthogonal basis has the quasi-equivalence property
if any two orthogonal bases in E are quasi-equivalent.

An orthogonal basis (z,,) in a metrizable lcs E is regular if there exists a base of
norms (pg) in P(F) such that (z,) is 1-orthogonal with respect to (pg) and

pk<xn+1)
pk+1(37n+1)

Pr()
pk+1<xn>

> for all k,n € N;
in this case we will say that (z,) is regular with respect to (pg). If (z,) is regular
with respect to (py), then it is regular with respect to any subsequence (py,,) of (p).

Let a = (a,) be a non-decreasing sequence of positive real numbers with a,, — oo.
Then the following spaces are nuclear Fréchet spaces (see [3]):

(1) Ai(a) = {(o) C K : limy, |ap|(725)* = 0 for all k € N} with the base (py)
of norms: pi((cv,)) = kmax, |an|(ki+1)a", ke N;

(2) Ax(a) = {(ay) C K : lim,, |, |k% = 0 for all £ € N} with the base (gx) of
norms: g((ay,)) = max, |a,|k*, k € N.

Aj(a) and Ay (a) are the power series spaces (of finite and infinite type, respec-
tively). The standard basis (e,) in Aj(a) and A (a) is regular with respect to the
bases of norms (py) and (g), respectively.

3 Results

For arbitrary subsets A, B in a linear space F and a linear subspace L of E we
denote d(A,B,L) = inf{|f| : 8 € K,A C (6B + L)} (we put inf() = +00). Let
d,(A,B) =inf{d(A,B,L): L < E,dimL < (n—1)},n € N.

It is easy to check the following

Remark 1. [fA'CACE,BC B CEFE andn €N, then d, (A", B') <d,(A, B). If
a,be (K\{0}),A,BCFE andn € N, then d,(aA,bB) = |ab~!|d,(A, B).

We will need the following

Lemma 2. Let (f,) be the sequence of coefficient functionals associated with a basis
(zn) in ales E. Let (ar), (by) C (0,00) with agby' > api1byyy for all k € N. Put
A={x e E:|fe(x)| < ax,k € N} and B={x € E : |fe(x)| < by, k € N}. Then for
anyn € N and o € K with |a| > 1 we have |a|ta,b;' < d,(A, B) < |a|a,b; .

Proof. Clearly, there exists 8 € K with a,b,* < || < |alanb,!. Let z € A.
Since |37 fi(2)| < a;'b,ar < by for any k > n, then (332, 371 fu(x)x)) € B. Hence
x € (BB +lin{z; : 1 <i<n}). Thus A C (BB + lin{z; : 1 <i < n}). This follows
that d,(A, B) < |alanb, .
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Now, assume that L < E, 8 € K, |8| < |a|a,b,' and A C (6B + L). For
1 <i<nlet 3 € Kwith |o|'a; < |Bi] < a;. Then Biz; € AC (BB+1L),1 <i<n.
Thus for any 1 < i < n there exists u; € B such that v; = (B;z; — fu;) € L
We shall prove that vq,...,v, are linearly independent in L. Let ¢i,...,¢c, € K
with 37 ¢;u; = 0. Put of = fi(w;) for 1 < i < n,k € N. Then |a}| < b for all
1<i<n,keN, and

n

Zczﬂﬂi = Zﬁcz‘uz Zﬁcz Z Oéﬂk = Z Zﬁciafg)ﬁk
i=1 i=1 i=1 — k=1 i=1
Hence (%) crfe = X0y Beat, 1 <k <mn. Forany 1 < k < n there exists 1 < i, <n
with |ag*] = maxi<i<p [a)]. Let 1 < k < n. Put ap = opf if opf # 0, and let oy, € K
with 0 < |ag| < by if o = 0. By (%), we get

(o) cxhop’ = S (e (G anfobop ).

i=1
For any 1 <7 <n we have
167 el 8l agai | < (Jala; H)bi(|al ™ aib )1 = 1.
Thus ¢ := max; <<, Maxi<i<, |3 iBala; | < 1. By (*x), we obtain

|enBrag ] < ¢ max lciBia; M|, 1 < k <.

Hence ¢, =0 forall 1 < k <n.
Thus dim L > n and d,(A, B) > |a|a,b; . (]

Now, we can prove the following

Proposition 3. Any two reqular orthogonal bases (x,,) and (y,) in a metrizable lcs
E are semi equivalent.

Proof. Let a € K with |a| > 1. Assume that (z,) and (y,) are regular with
respect to bases of norms (p) and (gx) in P(E), respectively. Without loss of
generality we can assume that

() pn < lal %4 < la] *puss < laf Oguar for alln € N.

Set U, ={z € E:py(x) <1} and V,, = {y € E : ¢,(y) < 1} for n € N. Let (f,)
and (g,) be the sequences of coefficient functionals associated with the bases (z,,)
and (y,), respectively. Put a,, = pn(zx) and b, = ¢,(yx) for all n,k € N. Then
at,ka;}g > at,kﬂa;}gﬂ and l)t,kb;,,lC > bt,kﬂb;,ﬁH for all t, s,k € N with t < s.

Since p,(x) = max;, |fk(a:)\ank and ¢, (y) = maxy, |gx(y)|bn for z,y € E;n € N,
then U, = {z € E: |fi(z)| < a, ),k € N} and V, = {y € E : |g(y)| < b}, k € N}
for n € N. Let t,s € N with ¢t < s. By Lemma 2, we obtain

(x1) |a|” 1atna V' <d,(U,,Uy) < |a|atna5n,n eN;

(%9) || by nby Y 2(Vs, Vi) < a|bynbs )l n € N,

sn — s,n’
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Let n € N. Let 4, j € N with ¢ < j. By (), we have U; D o?V; D o?V; D a*Uj,;.
Hence, by Remark 1, we get

o dn(Ujs1, Ui) = du(0*Uj11, Us) < d(0®Vj, a?Vi) = du(V}, V7).

Using (#1) and (%) we obtain that |o|*a; a7}, < |a|b;.b;,.

Now, let 7, j € N with j < i. Then we have V; D o?U;,; D «*U; D o*V;. Hence
we get |a|'d,(V;, V) < d (Ui, Ujt1). Thus |af*b; b < |o|aji1na;,

We have proved that |Oz|2ai7nb;,{ < ajﬂ’nbj}ll for all n,i,j € N.

Let n € N, A,, = sup, amb;,ll and B, = inf; ajH’nbjf,lL. Then |a|?4,, < B,. Thus
there exists ¢, € K with A, < |¢,| < B,. Hence for any k € N we get ak,nb,;; <
len| < ak+1,nb,;;; SO gy < |Cp|bgn < Gigr1n for all k,n e N.

We have shown that pi(z,) < qk(chyn) < prei(zy,) for all k,n € N. It follows
that pr(XCm anty) < (X ancaln) < pro1(Cm anay) for all k;m € N and
ai,...,a, € K. This proves that the bases (z,) and (¢,y,) in E are equivalent.
Thus the bases (z,), (y,) are semi equivalent. ]

Our next result is the following

Proposition 4. Let E be a metrizable lcs with a regular orthogonal basis (x,,). Then
for any orthogonal basis (y,) in E there exists a permutation o of N such that (Ys(n))
15 a regqular orthogonal basis in E.

Proof. Let (f,) and (g,) be the sequences of coefficient functionals associated
with the bases (z,,) and (y,), respectively. Since

1= [9,(0)] = 9203 o))l = |3 Fulw)gn ()| < mise| fuly ) ()] m € N,

k=1 k=1

then for any n € N there exists t, € N with |f;, (yn)gn(ze,)] > 1. For every
s € N we have fu(zs) = oS50 ga(@a)tn) = S0y folyn)gn(zs). Hence we ob-
tain | fs(yn)gn(zs)| —n 0,5 € N. Thus for any s € N the set {n € N : ¢, = s} is
finite. Therefore there exists a permutation o of N such that the sequence (t5(,)) is
non-decreasing.

Assume that (z,) is regular with respect to a base of norms (py) in P(E). For
any k € N there exist a norm ¢ on E and s; € N with p, < g, < ps, such that (y,)
is 1-orthogonal with respect to g. For all n, k € N we obtain

P fo, (Yn)e,) < max pi(fon(Yn)Tm) = i(Yn) < |gn (e, )| MaX @i (G (22, )Ym) =

(gn (@) ar (@) < Po (fr () e,)-
Hence (x) pe(fe, (Yn)2e,) < 0r(yn) < s, (frn (Yn)x, ) for all k,n € N.
Put r¢(z) = max, |g,(2)|pe(fi, (Yn)z1,), k € Nz € E.
By (%), we get 7y () < maxy, |g,()|gk(yn) = 4s(x) < ps, (2), and

i) < max,, |gn(2) | (yn) < maxy |9, (2)|ps, (fin, (n)Tr,) = 75, (2)-
Thus (ry) is a base of norms in P(FE). Clearly, (y,) is 1-orthogonal with respect

to (rx) and
re(yn)  pelfen)Te)  pe(ee)
That(Un)  Petr(fo.(Yn)@e,)  Prsa(@,)

Since the basis (z,) is regular with respect to (p;) and the sequence (ty(,)) is non-
decreasing, the basis (yo(,)) is regular with respect to (7). ]

for all k,n € N.
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By Propositions 3 and 4, we obtain our main result.

Theorem 5. Any metrizable lcs with a reqular orthogonal basis possesses the quasi-
equivalence property.

Corollary 6. The power series spaces Ai(a) and Ay (a) have the quasi-equivalence
property. In particular, the space A1(K) of all analytic functions in the unit ball of
K, and the space A (K) of all entire functions in K have this property.

By the closed graph theorem (see [9], Theorem 2.49), we get

Remark 7. For orthogonal bases (x,,), (y,) in a Fréchet space E the following con-
ditions are equivalent:

(1) the bases (x,) and (y,) are equivalent;

(2) for any (6,) C K the sequence (Bpx,) is convergent to 0 in E if and only if
the sequence (Bnyn) is convergent to 0 in E;

(3) for any (6,) C K the series Yo, Bny is convergent in E if and only if the
series Y o2 1 Buyn 1S convergent in E.

Using Remark 7, we shall prove the following

Proposition 8. The Fréchet spaces: KN co,co x KN and cf) possess the quasi-
equivalence property.

Proof. (A). First, we show that any two orthogonal bases (z,), (y,) in K are
equivalent. Assume that (x,) is 1-orthogonal with respect to a base (py) in P(KY).
Let k € N. Since the space KV is of finite type, dim(K"N/ker py) < oo. It is easy
to see that kerpy is the closed linear span of {z, : px(z,) = 0}. Hence the set
{zn : px(z,) > 0} is finite for any k € N. This follows that for any (3,) C K, the
sequence ((3,x,) is convergent to 0 in KN. Similarly, for any (3,) C K, the sequence
(Bnyn) is convergent to 0 in KN. By Remark 7, the bases (z,,), (y,) are equivalent.

(B). Any two orthogonal bases (x,,), (y,) in ¢o are semi equivalent. Indeed, set
[|(Bn)|| = max, |5,| for (8,) € co. Let f € K with |3] > 1. Then there exists a
sequence (3,) C (K\{0}) such that ||y,|| < ||Bnznl| < |B|||yn|| for any n € N. Using
Remark 7, we infer that the bases (3,z,) and (y,) are equivalent. Hence (z,) and
(yn) are semi equivalent.

(C). Now, we prove that any two orthogonal bases (z,) and (y,) in ¢y x KN
are quasi-equivalent. Set rj((v,), (8,)) = kmax{max, |a,|, maxi<,<i |3,|} for all
ke N and ((an), (8,)) € co x KN, Of course, (ry) is a base in P(cy x KY).

Assume that (x,) is l-orthogonal with respect to a base (px) in P(co x KN).
Clearly, there exist m,k € N with r; < p,, < . Since kerry C kerp,, C kerr; C
co x KN, then (co x KN/kerp,,) is an infinite-dimensional quotient space of the
Banach space (co x KN/ kerr,) of countable type. Thus (co x KN/ kerp,,) is an
infinite-dimensional Banach space of countable type, so it is isomorphic to ¢g. Put
M = {n € N : p,(z,) > 0}. Denote by X, and X; the closed linear spans of
{z, :mn € M} and {z, : n € (N\ M)}, respectively. Since ¢y x K is isomorphic
to Xo x X7 and X; = kerp,,, then Xj is isomorphic to ¢y and dim X; = oco. For
any s > m there exists t € N with r < p,,, < ps < ry; then dim(ker p,,,/ ker pg) <
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dim(kerry/ kerr;) < oo. Thus X is an infinite-dimensional Fréchet space of finite
type, so it is isomorphic to KV,

Similarly, there exists L C N such that the closed linear span Yj of {y, : n € L}
is isomorphic to ¢q and the closed linear span Y7 of {y, : n € (N\ L)} is isomorphic
to K.

Let o be a permutation of N with (L) = M. Since any two orthogonal bases
in ¢y are semi equivalent, there is a sequence (ay)ner C (K '\ {0}) such that the
orthogonal basis (y,)ner, in Y is equivalent to the orthogonal basis (0 Zo(n))ner in
Xo. Let a, be equal to the unit of K for all n € (N'\ L). Then the orthogonal
basis (Yn)ne@\r) in Y7 is equivalent to the orthogonal basis (aZo(m))nemnr) in Xi.
Using Remark 7 we obtain that the orthogonal bases (i), (nZs@m)) in co X KN are
equivalent, so the bases (z,) and (y,) are quasi-equivalent.

(D). Finally, we prove that any two orthogonal bases (x,), (y,) in ¢ are quasi-
equivalent. Put ||G|| = max; |3;] for 6= (8;) € ¢, and rp((a,)) = k maxy<p<k |||
for all k € N and (o) € . Clearly, (r}) is a base in P(c})).

Assume that (z,) is 1-orthogonal with respect to a base (pi) in P(c})). Denote
by po the zero seminorm on c¢. For any m € N there exist s,k € N such that
Pm—1 < 15 < rsr1 < pg; then dim(kerp,, 1/ kerpy) > dim(kerry/kerrgyq) = oo.
Thus without loss of generality we can assume that dim(ker p,,_1/kerp,,) = oo for
any m € N.

Let m € N and t € N with p,, < r;. Since kerr, C kerp,, C kerp,,_1 C cgl,
then (ker p,,—1/ ker p,,) is a quotient space of (ker p,,,—1/ ker ;) and (ker p,,,—1/ ker 1)
is a closed subspace of the Banach space (c)/kerr;) of countable type. Thus
(ker pm—1/ ker p,,,) is an infinite-dimensional Banach space of countable type, so it is
isomorphic to cg.

Similarly, there exists a base (qx) in P(c)) such that (y,) is l-orthogonal with
respect to (gx) and the quotient space (ker g,,_1/ ker g,,,) is isomorphic to ¢q for any
m € N (we set gy = po).

Let k € N. Put Ny ={n eN:z, € (kerpy_1 \ kerpy)} and My ={neN:y, €
(ker gx—1 \ ker gx)}. Denote by X and Y} the closed linear span of {z, : n € Ni}
and {y, : n € M}, respectively. Clearly, ker py_; is isomorphic to X x ker p; and
ker g, is isomorphic to Y, X kerq,. Hence X} and Y} are isomorphic to c¢g. Of
course, Upe; Ny = Upey My = N, N; N N; = 0 = M,; N M for all 7, j € N with ¢ # 7,
and the sets N, M, are infinite for any k£ € N. Thus there exists a permutation o
of N such that o(My) = Ny for any k£ € N. Since any two orthogonal bases in ¢
are semi equivalent, then there exists a sequence (a,,) C (K '\ {0}) such that the
orthogonal basis (,To(n))nen, in Xy is equivalent to the orthogonal basis (yn)nens,
in Yy, for any k € N.

We shall prove that the orthogonal bases (yn), (nZo@m) in ¢ are equivalent.
Let (3,) C K. Assume that 3,y, — 0 in ¢). Then lim,eps, Bnyn = 0 in ¢ff for any
k € N. By Remark 7, lim,cps, Br0nZTo@n) = 0 in CISI for any £ € N. We show that
BrnnTom) — 0 in c). Suppose, by contradiction, that there exists a neighborhood
U of 0 in ¢y and an increasing sequence (s,,) C N such that 3, as, Zs(s,) € (¢ \ U).
Then for any k& € Ntheset {n € N: o(s,,) € Ny} is finite. Thus for every k € N there
is n, € N with {o(s,) : n > ny} C U2 Ni. Hence pi(Bs, 0, %o(s,)) = 0 for all
k,n € N with n > ny. It means that 3, as, Zs(s,) —n 0 in CISI, a contradiction. Thus
we have proved that 8,0,Zs@,) — 0 in cgl. Similarly, assuming that §,0,Ze@n) — 0
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in ¢, we get 3y, — 0 in ¢ff. By Remark 7, the orthogonal bases (@, Zo(n)), (Yn) are
equivalent; so the bases (z,) and (y,) are quasi-equivalent. ]
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