Polynomial decay for coupled Schrodinger
equations with variable coefficients and damped
by one Dirichlet boundary feedback
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Abstract

The main purpose of this paper is to study, under a suitable geomet-
ric conditions, the indirect boundary stabilization for coupled Schrodinger
equations with variable coefficients and one Dirichlet boundary feedback.
The polynomial energy decay rate for smooth solutions is obtained by the
combination of the Riemannian geometry method in [Yal] and the ideas of I.
Lasiecka and R. Triggiani in [LT3].

1 Introduction

Let Q) be a bounded open domain of class C? in R"(n € IN*) and let {Ty, T} be
a partition of the boundary I verifying I'1 # &. Denote by v = (vy,..., ;) the
outward unit normal vector to I'. Let T > 0 and put Q = Q x]0,T[, & =
T; %10, T[ (I =0,1).
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is a second order differential operator with real coefficients a;; = aj; of class
C* (Q) and there exists a9 > 0 such that

Y aij (x) 2,8 > a0y 7,
=1

ij=1

forallx € Q, = (01,8, C,)" € R
Let 2/ = i a;j (x) %vi be the co normal derivative with respect to A.
g iz %
We are concerned with the coupled complex valued Schrodinger equations with
variable coefficients and forcing term u in the Dirichlet boundary condition. This con-
trol function u is acting on one end only (no damping acting on z on ¥):

iy + Ay +az=0in Q,
izi+ Az +ay =0in Q,
y=0onXy y=uonXjandz=00onZ,
y(0) = ypand z (0) = zp in Q.

1)

where 7 is a positive constant (the coupling coefficient).

The uniform stabilization and controllability of one Schrodinger equation with
constant coefficients have been studied by many authors (see for examples [LT3,
MZ, Mac]). Recently, P. E. Yao has introduced the Riemann geometric method to
study the problem of exact controllability of real valued wave, Euler-Bernoulli and
Shalow Shells equations with variable coefficients (see [Yal, Ya2,Ya3]). In [NP], the
authors have used this approach to establish observability estimates for vector-
valued Maxwell’s system with variable coefficients. Using this approach, several
papers were devoted to the stability of variable systems (see [FF2, GY]). More
recently, another question has been considered by F. Alabau, A. Beyrath, P. Can-
narsa and V. Komornick [Ala, ACK, Bey]: the problem of indirect boundary and
internal stabilization of coupled real valued hyperbolic systems. They have proved
that the feedback of the first equation is sufficient to stabilize polynomially the to-
tal system.

In this paper, we prove that we can use a successful combination of two key
ingredients to obtain the polynomial energy decay rate for smooth solutions of
system (1), with a suitable choice of the Dirichlet control function u:

(1) The Riemann geometric approach, recently, developed by P. F. Yao in order
to reduce the original variable coefficients principal part problem to a problem
on an appropriate Riemann manifold, where the principal part is the Laplacian.
Using this geometry on R”, we construct, in our paper, a main geometry on C"
(see section 2 below).

(2) The ideas of I. Lasiecka and R. Triggiani [LT3] used to obtain the direct
stabilization of one Schrodinger equation with Dirichlet boundary feedback.
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2 Metric on C".

Let (.,.)
g
space R} = IR” generated by the principal part A (see [Yal)).
We can construct an inner product on C# = C" (we take the same symbol) by
forall Z1,7Z, € C"

and |.|| ¢ be the Riemannian inner product and norm on the tangent

<Zl,Zz>g = <ReZ1,ReZ7_>g—|— <ImZ1,ImZ2>g
+i (<Im Z1,ReZy), — (Re Zl,ImZz>g) ,
so the norm is ) ) )
12y = (Z,Z) 4 = |Re Z|[; + [[Im Z[[,

forall Z € C".
Let f be a complex valued function and & be a vector field on R". We put

I (f) = (Re f) + ih (Im f)

and

where the gradient of a real valued function k in the Riemannian metric is defined,
via Riesz representation theorem, by

X (k) = (Vgk, X)),

where X is any vector field on the manifold R" (see [Yal]).
We shall need the following formulas:

Lemma 1. 1/ Let f1, f» be a complex valued functions in H? (Q). Then

[ AT = [ (Ve Vo)~ [ 327
Q Q

raUA

2/ Let f be a complex valued function in C' (QQ) and h be a vector field on R". Then

Re (Vgf, Vg (h (f))>g = 2)
Dh (VgRef,V Ref) 4+ Dh (VgIm f, VoIm f)

1 2
wan (v rI?),
where Dh is the covariant differential of h.
Proof. 1/

[AmFf = [ARef)Refr+ [A(mfi)Imf,
Q

Q Q

+i (/A(Imfl)Refz - /A(Refl)lmfz) /
Q Q
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using Green'’s formula in [Yal] concerned with the real valued functions, we find
/Aflez
Q
+i [ ((VgImfi, VeRe o), — (VgRe fy, VgIm o))
oR ol
—/< ©fiRe fy + amfl f)

aUA

_‘/r(a;?AﬁRf aRefll f)

[ AfR

70 ((Re (Vgf1) ,Re (Vo)) + (Im (Vgfi) ,Im (Vfa) ), )
Hi [ (1 (Vo) Re (Vo) — (Re (Vehi) Im (Vo))
(532 e 2 )
(3 e (2) ).

which implies the desired formula.
2/ It is sufficient to see that

Re(Vf, Vg (h(f))y = (VgRef Vg (h(Ref))),
+(VgImf, Vg (1 (Im ),

s0, (2) is obtained by lemma 2.1 in [Yal] . ]

3 Geometric assumptions and notations.

Geometric assumptions.

Assume that there exists a real vector field h ¢ [Cl (5)}” on Riemannian
manifold R", a constant my > 0 such that

Dh (X, X) > mq || X[}, for all X € R} 3)

and

2mgy > aCy, 4)
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where C;, = sup ||V (divoh) Hg and « is the positive constant verifying [ |f 2 <
xeQ)

0 [ | Vof]l; for all £ € H (02).
We assume that
Ip={xeTl:hv<0}.

Let us give an example of vector field & satisfying (3) and (4).

Example. Noting that, in [FF1] the authors have proved that the geometric
condition (3), derived by P. E. Yao in term of the Riemannian geometry method,
is equivalent with the following analytical condition given by A. Wyler [Wyl] for
the boundary stabilization of wave equations with variable coefficients:

(Pij) is uniformly positive definite matrix in ), where
"o oh; M Oh;
J— J— e ] i N
Pij Pji 12_1 aj] %) + lz_l aj —axl Voal].h.

n
Ifh(x) =Y hi(x) % is a vector field on R” such that divgh is constant, thus, (4)
i=1 '
is verified. If (a;;) is a matrix defined by
0:1#],
(xi) 2 i =],

where, for alli = 1,..,n, f; : R — R is a function of class C* satisfying the
condition

aij (x]./ X2y eeey xn) - { f
1

min f; >0
and
min (Zfi% - %h) >0,i=],
fiogh + fiom =0, i#],
then (pi]') is an uniformly positive definite matrix in ().
As an example of such vector and matrix we can take h; = x; — x?, xo € R"

and f; (x;) = (x; — 29)” + p where € RY.

Remark 2. We note that assumption (4) has been used in [LT2] to study the exact con-
trollability of wave equation. It is needed to absorb the lower order term with respect to
the energy in (13).

Notations.
Let A be the positive self adjoint operator on L? (Q) defined by

Af = Af and D (A) = H?> (Q) N H} (Q)).

The following space identification are know (with equivalent norms)

D(A%) - H},(Q),(D(A%)):H—l(a).

Il a3y = 4512 1 ”@(ﬁ))’zHA‘%f

12(Q)
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Let us introduce the operator D : L2 (T') — L? (Q) defined by
f=Dw<= (Af =0,fm, =0 fr, = w)
and his adjoint D* by
(Dw, f) 120 = (@, D" ) 12ry,

we L?(T)and f € L?(Q).
We have (see [LLT]), forall f € D (A)

0 on Fo,

D Af:{ —£}—onnF1.

In all this paper, C is a generic positive constant which do not depend on the
initial data and it may change from line to line.

4 The closed loop system: Choice of the Dirichlet control func-
tion u.

Using the techniques of [LT1, LT3], problem (1) can be written in abstract form as

- D)

If we take u = F (y) = —iD*y then (5) is rewritten as

d [y _ y
()= (1).

; *
AF:i(A—HADD a)l

where

a A

with domain

D (Af) = (

(1)< (0 (a) < (o (4))

This choice of u makes the operator Ar dissipative on (D (A
Indeed,

=
N—
\_/\
X
/N
o
/N
S
NI—
N—
N—

re(4r(1).(1)) (0(a2))«(o(41))

= —|ID*y|f2(r) <O.
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Remark 3. The operator Ar with domain D (Af) is a maximal dissipative operator in

(D (A%>> X (D (A%>> . We shall here omit details of the proof and refer to similar

situation for other dynamic in [BT].
Let N > 1. If we use theorem VII4 and theorem VII5 in [Bre|, we have that if
(yo,z0) € D (AY) the system (6) has a unique solution (y,z) € CN7I([0,+o0);

D (A;))forj =0,..,N.

(u1,up) € D (AFN_1> :

1y _ Ny _
Here D (A}) = D (Ap)and D (A}) = { Ar () € D (AIFV_l) }forN > 2.

5 Indirect boundary stabilization result.

We define the total energy E of (6) by

1
E(t) = EH(y,Z)HZ(D(A%)>x(D(A%>)
1 12 1
2(Q) 2

) HA_Zy 12(Q)

By the dissipation of the operator Ar, we can see that E is a decreasing function

dE (t) _ *. 112
—r = ~IDYlr) < 0.

We have

Theorem 4. Let N > 1. For any initial data (yo,z0) € D (AY), the energy E of the
solution of the closed loop dynamics (1), with the choice of u = —iD*y inserted in the
boundary condition, decays polynomially:

forall t > 0.

Proof. Step 1. Change of variable.
Motivated by the techniques of [LT3], we introduce a new variables p and g
by setting
p=Alyandg= A"z

where (1o,z9) € D (Afr), then, by (6), we obtain the system

ipp+ Ap+G+aqg=0inQ,
igr+Aq+ap =0in Q,
p=qg=0onZ,
p(0) =poand q(0) =gpin (),
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where G = iDD* Ap. On the other hand, we have E (t) = E; (t) + E; (t), where

1 112
Ei(t) = iHA 2y

L2(Q)

— 4] =2 / Vel
and
B(f) = %HA_%Z iZ(Q)
- %HA%[J ;(Q):%!)vaqué'
We can see that
2
Z/l e I L7

T

Y0
- ‘{795(0)

and

[16? = [ipD*ap?
Q Q

2
SC/
]

Step 2. In this step we shall estimate the term fOT Eq ().
We have

< CE(0).

P
aUA

0 = Re /Q (ip: + Ap + G + aq) (21 (P) + divghip +7)
—Re/Q (—ig, + AG +ap) p
— R i q q R q — q
et/Q (pd + pq,) + e/Q (Apq — Aqp)
+Re /Q Ap (2h (p) + divohp)
— Im/Q pt (2h (p) + divghp)
+Re /Q G (2h (P) + divohp +7)

+Re/Qaq (2h (p) + divohp)

—/Qa|p|2+/Qarqu. )
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But
Rei /Q(pfmpm) — Rei /Quoﬁ)f (8)
= —Im [ pal]
R Avg — Agp) =0 9
e/Q( pq — Aqp) 9

Re/QAp (2h (p) + divghp)
~ Re /Q (Vep, Vg (2 (p) +divghp))
op
%
= Z/QDh(VgRep,VgRep)
+2/QDh (V¢ Imp, Vg Imp)
+Re /Q (Vep, Vg (divgh)), 7

ap 2
—2Re£%h(p) +/Zh.vHVngg

Since, Rep = Imp = 0 on T, then we have [Yal]

h(Rep) — h.v ZaaRep,
o4 (x)[lg VA
2 1 dRep?
IVeRep|? = - (52)
loa )2\ dv,
and
h(imp) = h.v 2E)aImp,
lva(¥)[ls @vA
> 1 dImp\?
Vetmpl? = s (50E)
loa @2\ dv,
So . 5
Ny p
h(p) =
loa (x)]3 9va
and )
1 op
[Verlls = :
$ flva (@)l 190
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then
We have
(@]
(@]
Then

tm | pi (24 (p) + divghp) = Im || ph (P)]5-

Re /Q Ap (2h (B) + divohp)
Z/QDh (V4Rep, Vg Rep)

+2/QDh (Vglmp,vglmp)

+Re /Q (Vep, Ve (divoh)) 7

apz

v,

_/ h.v
loa (012

Replacing (8)-(11) in (7), we find

where

2/QDh (V¢Rep, V¢ Rep)

+2/QDh (VeImp, Vg Imp)

IA
@)
0
§H

I. Hamchi

(10)

(11)

(12)
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o = — Re/Q (Vep, Vg (divgh)), 7
~Re /Q G (21 (F) + divohF + 7)

—Re /Q aq (2h (p) + divghp)

—I—/a 2—/a 2,
0 Pl 0 Ll

— Re/Q <Vgp, Ve (divoh)>gﬁ

1952l 195 (aioom | 1o

Chex 2 Gy 2
T/QHVgPHgWLg/JM :

First, we can see that

IN

IN

then, for ally > 0,

Cyu » C
lo < 5 [ IVsplls+50 [ IpP+CE)

(e[ e+ [ P 13)

a 2 T
—§/Q|q| +Ca [ Ei(h).

Replace the majorities of In, Iy, (I = 0,1) and I in (12), use (3) and (4), choose 1
and a sufficiently small, we find

/0 "Ey(t) < CE(0). (14)

Step 3. In this step we shall estimate the term fOT E(t).
We have

0 — Re/Q(—iﬁt—i—Aﬁ—i-a?)p

—Re/Q(ipt—i-Ap—l—G—l—aq)ﬁ

1 / _\T / 2
mﬂpq!o+ Qalpl

—Re/G_—/a 2,
o %17 q 4]

/Q|q|2 < CE(0). (15)

If we use this inequality with the derivatives, we obtain

/Q g7 < CE (v (0) 2 (0)). (16)

SO
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On the other hand, we have
0 = Re/Q(iqt-l-Aq-l-ap)ﬁ

_ 2

— —Im/quq"'/Qvaqu
+Re [ apg,
e Qapq

then
2 _ _
/QHngHg = Im/thq Re/Qan-

If we use (14), (15) and (16) we find

[ B2 () < CEW©),2(0) +E e (0),2(0).

Finally, we have

T T T
L E® = [ Ew+ [ Ew
< C(E(y(0),2(0) +E (y: (0),2 (0))).

Since E is a decreasing function we find

TE(y(T),z(T)) < C(E(y(0),2(0)) + E(y:(0),2(0)))-

This imply the polynomial decay of the energy for (vo,z0) € D (Af) .
By induction on N > 1, we obtain

forallt > 0 and (yo,2z0) € D (AY). m
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