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Abstract

In this paper we give some sufficient conditions, which do ensure the
existence and uniqueness of a compact almost automorphic solution to some
hyperbolic differential equations. As an illustration, we study the existence
and uniqueness of almost automorphic solutions to a one-dimensional heat
equation with small delays.

1 Introduction

Let (X, ‖ · ‖) be a Banach space and let Xα, for α ∈ (0, 1), be an abstract inter-
mediate Banach space between D(A), the domain of a linear operator A defined
on X, and X. Examples of those Xα include, among others, the fractional spaces
D((−A)α), the reel interpolation spaces DA(α, ∞) due to both Lions and Peetre,
and the Hölder spaces DA(α), which coincide with the continuous interpolation
spaces that had been introduced in the literature by Da Prato and Grisvard.

In [3] some sufficient conditions for the existence and uniqueness of an almost
automorphic solution to the differential equation

u′(t) = Au(t) + f (t, u(t)), t ∈ R, (1.1)
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where A is a sectorial operator whose corresponding analytic semigroup (T(t))t≥0

is hyperbolic, equivalently, σ(A) ∩ iR = ∅, where σ(A) denotes the spectrum of
the linear operator A.

In this paper we extend the previous-mentioned result to the more general
class of differential equations given by

d

dt
[u(t) + f (t, Bu(t))] = Au(t) + g(t, Cu(t)), t ∈ R (1.2)

where A : D(A) ⊂ X 7→ X is a sectorial operator whose corresponding an-
alytic semigroup (T(t))t≥0 is hyperbolic, i.e. σ(A) ∩ iR = {∅}, the operator
B, C are arbitrary densely defined closed linear operators on X, and f , g are some
jointly continuous functions satisfying some additional assumptions (Theorem
3.5). Applications include the study of almost automorphic solutions to as one-
dimensional heat equation with small delays.

In this paper, as in [3, 12, 14], we consider a general intermediate space Xα

between D(A) and X. In contrast with the fractional power spaces considered
in some recent papers of the author et al. [15, 16], the interpolation and Hölder
spaces, for instance, depend only on D(A) and X and can be explicitly expressed
in many concrete cases. The literature related to those intermediate spaces is very
extensive, in particular, we refer the reader to the excellent book by A. Lunardi
[27], which contains a comprehensive presentation on this topic and related is-
sues.

The existence of almost periodic, asymptotically almost periodic, pseudo al-
most periodic, and almost automorphic solutions is one of the most attractive
topics in qualitative theory of differential equations due to their significance and
applications in physics, mathematical biology, control theory, physics and others.

The concept of almost automorphy, which is the central issue in this paper,
was first initiated by Bochner in his landmark paper [2]. Since then the theory
of almost automorphic functions has found several developments and applica-
tions in the theory of abstract differential equations, partial differential equations,
functional-differential equations, and integro-differential equations. For more on
these and related issues, we refer the reader to [7], [8], [9], [10], [11], [28], [29],
[32], [33], and [34] and the references therein. Note that (1.2) includes delay cases
and related topics. Thus it is more convenient to consider the so-called compact
almost automorphy [7, 25] rather than the classical almost automorphy [2, 28, 32].

Some recent contributions on almost automorphic and asymptotically almost
automorphic solutions to differential and partial differential equations have re-
cently been made in [3, 7, 8, 9, 10, 28, 29]. However, the existence and uniqueness
of almost automorphic solutions to (1.2) in the case when A is sectorial is an im-
portant topic with some interesting applications, which is still an untreated ques-
tion, is the main motivation of the present paper. Among other things, we will
make extensive use of the method of analytic semigroups associated with secto-
rial operators and the Banach’s fixed-point principle to derive sufficient condi-
tions for the existence and uniqueness of an almost automorphic (mild) solution
to (1.2).
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2 Preliminaries

This section is devoted to some preliminary facts needed in the sequel. Through-
out the rest of this paper, (X, ‖ · ‖) stands for a Banach space, A is a sectorial
linear operator (see Definition 2.2), which is not necessarily densely defined, and
B, C are (possibly unbounded) linear operators such that A + B + C is not trivial,
as each solution to (1.2) belongs to D(A + B + C) = D(A) ∩ D(B) ∩ D(C). Now
if A is a linear operator on X, then ρ(A), σ(A), D(A), N(A), R(A) stand for the
resolvent, spectrum, domain, kernel, and range of A. The space B(X, Y) denotes
the Banach space of all bounded linear operators from X into Y equipped with
its natural norm with B(X, X) = B(X).

To deal with almost automorphic solutions we will need to introduce some
classical notions. Throughout the rest of the paper, (Z, ‖ · ‖Z), (W, ‖ · ‖W) stand
for abstract Banach spaces. In addition to that C(R, Z) and BC(R, Z) denote
respectively the collection of continuous functions and the collection of bounded
continuous functions from R into Z equipped with the sup norm defined by

‖u‖∞ := sup
t∈R

‖u(t)‖Z .

Similar definitions apply for both C(R × Z, W) and BC(R × Z, W).

2.1 Almost Automorphy

Definition 2.1. A strongly continuous function ϕ : R 7→ X is said to be almost
automorphic if for every sequence of real numbers (s′n)n∈N, there exists a subse-
quence (sn)n∈N of (s′n)n∈N such that

ψ(t) := lim
n 7→∞

ϕ(t + sn)

is well defined for each t ∈ R, and

ϕ(t) = lim
n 7→∞

ψ(t − sn)

for each t ∈ R.

The range of an almost automorphic function is relatively compact on X and
hence is bounded. We denote the space of almost automorphic functions ϕ : R 7→
X by AA(X). It is well-known that (AA(X), ‖ · ‖∞) is a Banach space, see, e.g.,
[28].

Among other things, almost automorphic functions satisfy the following prop-
erties.

Theorem 2.2. ([28, Theorem 2.1.3]) If ϕ, ϕ1, ϕ2 ∈ AA(X), then

(i) ϕ1 + ϕ2 ∈ AA(X),

(ii) λϕ ∈ AA(X) for any scalar λ,

(iii) ϕα ∈ AA(X) where ϕα : R → X is defined by ϕα(·) = ϕ(·+ α),
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(iv) the range Rϕ :=
{

ϕ(t) : t ∈ R
}

is relatively compact in X, thus ϕ is bounded in
norm,

(v) if ϕn → ϕ uniformly on R where each ϕn ∈ AA(X), then ϕ ∈ AA(X) too.

(vi) if ψ ∈ L1(R), then ϕ ∗ ψ ∈ AA(R), where ϕ ∗ ψ is the convolution of ϕ with ψ
on R.

Remark 2.3. The function ψ in the Definition 2.1 above is measurable, but not nec-
essarily continuous. Moreover, if ψ is continuous, then ϕ is uniformly continuous,
see details in [28, Theorem 2.6].

Example 2.4. A classical example of an almost automorphic function, which is
not almost periodic is the function defined by

ϕ(t) = cos

(

1

2 + sin
√

2t + sin t

)

, t ∈ R.

It can be shown that ϕ is not uniformly continuous, and hence is not almost
periodic.

Let l∞(X) denote the space of all bounded (two-sided) sequence in X. It
is equipped with its corresponding sup norm defined for each sequence x =
(xn)n∈Z ∈ l∞(X) by: ‖x‖∞ := sup

n∈Z

‖xn‖.

Definition 2.5. A sequence x = (xn)n∈Z ∈ l∞(X) is said to be almost automor-
phic if for every sequence of integers (k′n), there exists a subsequence (kn) such
that

yp := lim
n→∞

xp+kn

is well defined for each p ∈ Z, and

lim
n→∞

yp−kn
= xp

for each p ∈ Z.

The collection of all these almost automorphic sequences is denoted by aa(X).

Definition 2.6. A continuous function Φ : R × Z 7→ W is said to be almost
automorphic in t ∈ R for each z ∈ Z if for every sequence of real numbers (σn)N

there exists a subsequence (sn)N of (σn)N such that

Ψ(t, z) := lim
n 7→∞

Φ(t + sn, z) in W

is well defined for each t ∈ R and each z ∈ Z and

Φ(t, u) = lim
n 7→∞

Ψ(t − sn, z) in W

for each t ∈ R and for every z ∈ Z.
The collection of such functions will be denoted by AA(Z, W).
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Using [28, Theorem 2.2.6, p. 22] one easily obtains the following.

Theorem 2.7. Let F : R × Z 7→ W be an almost automorphic function in t ∈ R for
each z ∈ Z and assume that F satisfies a Lipschitz condition in z uniformly in t ∈ R.
Let φ : R 7→ Z be almost automorphic. Then the function Φ : R 7→ W defined by
Φ(t) := F(t, φ(t)) is almost automorphic.

In addition to the above-mentioned notions, the present setting requires the
introduction of the concept of compact almost automorphy, see, e.g., [25].

Definition 2.8. A continuous function F : R 7→ Z is said to be compact al-
most automorphic if for every sequence of real numbers (σn)n∈N there exists a
subsequence (sn)n∈N ⊂ (σn)n∈N such that G(t) := lim

n→∞
F(t + sn), and F(t) =

lim
n→∞

G(t − sn) uniformly on compact subsets of R. The collection of those func-

tions will be denoted by AAc(Z).

Let AP(Z) denote the space of almost periodic functions f : R 7→ Z. It is well-
known that AP(Z), AAc(Z), and AA(Z) are closed subsets of (BC(R, Z), ‖ · ‖∞)
with

AP(Z) ⊂ AAc(Z) ⊂ AA(Z) ⊂ BC(R, Z).

In view of the above, the proof of the next lemma is straightforward.

Lemma 2.9. The space AAc(Z) endowed with the sup norm is a Banach space.

Definition 2.10. A continuous function F : R × Z 7→ W, (t, u) 7→ F(t, u) is said
to be compact almost automorphic in t ∈ R, if for every sequence of real numbers
(σn)n∈N there exists a subsequence (sn)N ⊂ (σn)N such that

G(t, z) := lim
n 7→∞

F(t + sn, z), and F(t, z) = lim
n 7→∞

G(t − sn, z) in W,

where the limits are uniform on compact subset of R, for each z ∈ Z. The space
of such functions will be denoted by AAc(Z, W).

We have the following composition result.

Theorem 2.11. [11] Let F ∈ AAc(Z, W) and let ϕ ∈ AAc(Z). Assume that F is
Lipschitz, that is, there exists L > 0 such that

‖F(t, x)− F(t, y)‖W ≤ L ‖x − y‖Z , ∀t ∈ R, ∀x, y ∈ Z. (2.1)

Then the W-valued function G defined by G(t) := F(t, ϕ(t)) is in AAc(W).

Proof. Let (s′n)n∈N be a sequence of real numbers. Now, fix a subsequence (sn)n∈N

of (s′n)n∈N, G ∈ BC(R × Z; W) and ψ ∈ BC(R, Z) so that the pair G, (sn)n∈N is
associated with F as in Definition 2.10 and the pair ψ, (sn)n∈N is associated with
ϕ as in Definition 2.8. Let K ⊂ R be an arbitrary compact and let ε > 0. Since
R(ψ) = {ψ(t) : t ∈ R} is relatively compact, there exist points xi ∈ Z, i = 1, ...n,
such that for each t ∈ R one can find i(t) ∈ {1, ....n} with

‖ψ(t) − xi(t)‖Z ≤ ε.
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Let Nε be a natural number such that ‖F(s + sn, xi)− G(s, xi)‖W ≤ ε, ∀s ∈ K
and for all i = 1, ...n, whenever n ≥ Nε. In view of the above, for each s ∈ K, and
n ≥ Nε,

‖F(t + sn, ϕ(t + sn))− G(t, ψ(t))‖W

≤ ‖F(t + sn, ϕ(t + sn))− F(t + sn, ψ(t))‖W

+ ‖F(t + sn, ψ(t))− F(t + sn, xi(t))‖W

+‖F(t + sn, xi(t))− G(t, xi(t))‖W + ‖G(t, xi(t))− G(t, ψ(t))‖W

≤ L‖ϕ(t + sn)− ϕ(t)‖Z + L‖ψ(t) − xi(t)‖Z + ε

+ L‖xi(t) − ψ(t)‖Z

which proves that the convergence is uniform on K.
Arguing as previously it follows that G(t − sn, ϕ(t − sn)) − F(t, ϕ(t)) con-

verges uniformly to 0 on compact sets of R. This completes the proof.

2.2 Sectorial Linear Operators and their Associated Semigroups

Definition 2.12. A linear operator A : D(A) ⊂ X 7→ X (not necessarily densely
defined) is said to be sectorial if the following hold: there exist constants ω ∈ R,

θ ∈ (
π

2
, π), and M > 0 such that

ρ(A) ⊃ Sθ,ω := {λ ∈ C : λ 6= ω, | arg(λ − ω)| < θ}, and (2.2)

‖R(λ, A)‖ ≤ M

|λ − ω| , λ ∈ Sθ,ω. (2.3)

The class of sectorial operators is very rich and contains most of classical oper-
ators encountered in the literature. Two examples of sectorial operators are given
as follows:

Example 2.13. Let p ≥ 1 and let X = Lp(R) be the Lebesgue space equipped with
its norm ‖ · ‖p defined by

‖ϕ‖p =

(

∫

R
|ϕ(x)|pdx

)1/p

.

Define the linear operator A on Lp(R) by

D(A) = W2,p(R), A(ϕ) = ϕ′′, ∀ϕ ∈ D(A).

It can be checked that the operator A is sectorial on Lp(R).

Example 2.14. Let p ≥ 1 and let Ω ⊂ Rd be open bounded subset with C2 bound-
ary ∂Ω. Let X := Lp(Ω) be the Lebesgue space equipped with the norm, ‖ · ‖p

defined by,

‖ϕ‖p =

(

∫

Ω
|ϕ(x)|pdx

)1/p

.



On the Existence of Almost Automorphic Solutions 225

Define the operator A as follows:

D(A) = W2,p(Ω) ∩ W
1,p
0 (Ω), A(ϕ) = ∆ϕ, ∀ϕ ∈ D(A),

where ∆ =
d

∑
k=1

∂2

∂x2
k

is the Laplace operator.

It can be checked that the operator A is sectorial on Lp(Ω).

It is well-known that [27] if A is sectorial, then it generates an analytic semi-
group (T(t))t≥0 , which maps (0, ∞) into B(X) and such that there exist M0, M1 >

0 with

‖T(t)‖ ≤ M0eωt, t > 0, (2.4)

‖t(A − ω)T(t)‖ ≤ M1eωt, t > 0. (2.5)

Throughout the rest of the paper, we suppose that the semigroup (T(t))t≥0 is
hyperbolic, that is, there exist a projection P and constants M, δ > 0 such that T(t)
commutes with P, N(P) is invariant with respect to T(t), T(t) : R(Q) 7→ R(Q) is
invertible, and the following hold

‖T(t)Px‖ ≤ Me−δt‖x‖ for t ≥ 0, (2.6)

‖T(t)Qx‖ ≤ Meδt‖x‖ for t ≤ 0, (2.7)

where Q := I − P and, for t ≤ 0, T(t) := (T(−t))−1 .
Recall that the analytic semigroup (T(t))t≥0 associated with A is hyperbolic if

and only if

σ(A) ∩ iR = ∅,

see, e.g., [19, Prop. 1.15, pp.305].

Definition 2.15. Let α ∈ (0, 1). A Banach space (Xα, ‖ · ‖α) is said to be an inter-
mediate space between D(A) and X, or a space of class Jα, if D(A) ⊂ Xα ⊂ X

and there is a constant c > 0 such that

‖x‖α ≤ c‖x‖1−α‖x‖α
A, x ∈ D(A), (2.8)

where ‖ · ‖A is the graph norm of A.

Concrete examples of Xα include D((−Aα)) for α ∈ (0, 1), the domains of the
fractional powers of A, the real interpolation spaces DA(α, ∞), α ∈ (0, 1), defined
as follows

{

DA(α, ∞) := {x ∈ X : [x]α = sup
0<t≤1

‖t1−α AT(t)x‖ < ∞}

‖x‖α = ‖x‖+ [x]α,

the abstract Hölder spaces DA(α) := D(A)
‖.‖α

as well as the complex interpola-
tion spaces [X, D(A)]α, see A. Lunardi [27] for details.
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For a hyperbolic analytic semigroup (T(t))t≥0 , one can easily check that sim-
ilar estimations as both (2.6) and (2.7) still hold with norms ‖ · ‖α. In fact, as the
part of A in R(Q) is bounded, it follows from (2.7) that

‖AT(t)Qx‖ ≤ C′eδt‖x‖ for t ≤ 0.

Hence, from (2.8) there exists a constant c(α) > 0 such that

‖T(t)Qx‖α ≤ c(α)eδt‖x‖ for t ≤ 0. (2.9)

In addition to the above, the following holds

‖T(t)Px‖α ≤ ‖T(1)‖B(X,Xα)‖T(t − 1)Px‖ for t ≥ 1,

and hence from (2.6), one obtains

‖T(t)Px‖α ≤ M′e−δt‖x‖, t ≥ 1,

where M′ depends on α. For t ∈ (0, 1], by (2.5) and (2.8)

‖T(t)Px‖α ≤ M′′t−α‖x‖.

Hence, there exist constants M(α) > 0 and γ > 0 such that

‖T(t)Px‖α ≤ M(α)t−αe−γt‖x‖ for t > 0. (2.10)

3 Main results

To study the existence and uniqueness of pseudo almost periodic solutions to
(1.2) we need to introduce the notion of mild solution to it.

Definition 3.1. Let α ∈ (0, 1). A bounded continuous function u : R 7→ Xα is said
to be a mild solution to (1.2) provided that the function s → AT(t− s)P f (s, Bu(s))
is integrable on (−∞, t), s → AT(t − s)Q f (s, Bu(s)) is integrable on (t, ∞) for
each t ∈ R, and

u(t) = − f (t, Bu(t)) −
∫ t

−∞
AT(t − s)P f (s, Bu(s))ds

+
∫ ∞

t
AT(t − s)Q f (s, Bu(s))ds +

∫ t

−∞
T(t − s)Pg(s, Cu(s))ds

−
∫ ∞

t
T(t − s)Qg(s, Cu(s))ds

for each ∀t ∈ R.

Throughout the rest of the paper we denote by Γ1, Γ2, Γ3, and Γ4, the nonlinear
integral operators defined by

(Γ1u)(t) :=
∫ t

−∞
AT(t− s)P f (s, Bu(s))ds, (Γ2u)(t) :=

∫ ∞

t
AT(t− s)Q f (s, Bu(s))ds,

(Γ3u)(t) :=
∫ t

−∞
T(t − s)Pg(s, Cu(s))ds, and

(Γ4u)(t) :=
∫ ∞

t
T(t − s)Qg(s, Cu(s))ds.

To study (1.2) we require the following assumptions:
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(H1) The operator A is sectorial and generates a hyperbolic (analytic) semigroup
(T(t))t≥0.

(H2) Let 0 < α < 1. Then Xα = D((−Aα)), or Xα = DA(α, p), 1 ≤ p ≤ +∞, or
Xα = DA(α), or Xα = [X, D(A)]α. We also assume that B, C : Xα −→ X are
bounded linear operators.

(H3) Let 0 < α < β < 1, and f : R ×X −→ Xβ be a compact almost automorphic
function in t ∈ R uniformly in u ∈ X, g : R × X 7→ X be compact almost
automorphic in t ∈ R uniformly in u ∈ X.

(H4) The functions f , g are uniformly Lipschitz with respect to the second argu-
ment in the following sense: there exists K > 0 such that

‖ f (t, u) − f (t, v)‖β ≤ K‖u − v‖,

and
‖g(t, u) − g(t, v)‖ ≤ K‖u − v‖

for all u, v ∈ X and t ∈ R.

In order to show that Γ1 and Γ2 are well defined, we need the following estimates.

Lemma 3.2. Let 0 < α, β < 1. Then

‖AT(t)Qx‖α ≤ ceδt‖x‖β for t ≤ 0, (3.1)

‖AT(t)Px‖α ≤ ctβ−α−1e−γt‖x‖β, for t > 0. (3.2)

Proof. As for (2.9), the fact that the part of A in R(Q) is bounded yields

‖AT(t)Qx‖ ≤ ceδt‖x‖β, ‖A2T(t)Qx‖ ≤ ceδt‖x‖β, for t ≤ 0,

since Xβ →֒ X. Hence, from (2.8) there is a constant c(α) > 0 such that

‖AT(t)Qx‖α ≤ c(α)eδt‖x‖β for t ≤ 0.

Furthermore,

‖AT(t)Px‖α ≤ ‖AT(1)‖B(X,Xα)‖T(t − 1)Px‖
≤ ce−δt‖x‖β, for t ≥ 1.

Now for t ∈ (0, 1], by (2.5) and (2.8), one has

‖AT(t)Px‖α ≤ ct−α−1‖x‖,

and
‖AT(t)Px‖α ≤ ct−α‖Ax‖,

for each x ∈ D(A). Thus, by reiteration Theorem (see [27]), it follows that

‖AT(t)Px‖α ≤ ctβ−α−1‖x‖β

for every x ∈ Xβ and 0 < β < 1, and hence, there exist constants M(α) > 0 and
γ > 0 such that

‖T(t)Px‖α ≤ M(α)tβ−α−1e−γt‖x‖β for t > 0.
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Lemma 3.3. Under assumptions (H1)-(H2)-(H3)-(H4), the integral operators Γ3 and
Γ4 defined above map AAc(Xα) into itself.

Proof. Let u ∈ AAc(Xα). Since C ∈ B(Xα, X) it follows that Cu ∈ AAc(X).
Setting h(t) = g(t, Cu(t)) and using Theorem 2.11 it follows that h ∈ AAc(X).

For a given sequence (σn)n∈N of real numbers, fix a subsequence (sn)n∈N, and
a continuous functions p ∈ BC(R; X) such that h(t + sn) converges to p(t) in X,
and p(t − sn) converges to h in X, uniformly on compact sets of R. Using (2.10)
it follows that

‖T(t − s)Ph(s)‖α ≤ M(α)(t − s)−αe−γ(t−s)‖h(s)‖ (3.3)

and hence the function s 7→ T(t − s)Ph(s) is integrable over (−∞, t) for each
t ∈ R. Furthermore, since

w(t + sn) =
∫ t

−∞
T(t − s)Ph(s + sn)ds, t ∈ R, n ∈ N, (3.4)

using the estimate (3.3) and the Lebesgue Dominated Convergence Theorem, it

follows that w(t + sn) converges to z(t) =
∫ t

−∞
T(t − s)p(s)ds for each t ∈ R in

Xα.
The remaining task is to prove that the convergence is uniform on all compact

sets in R. Let K ⊂ R be an arbitrary compact and let ε > 0. Fix L > 0 and Nε ∈ N

such that K ⊂ [−L
2 , L

2 ] with
∫ ∞

L/2 s−αe−γsds < ε and

‖h(s + sn)− p(s)‖ ≤ ε, n ≥ Nε, s ∈ [−L, L].

Clearly,

‖w(t + sn)− z(t)‖α ≤
∫ t

−∞
‖T(t − s)P(h(s + sn)− p(s))‖αds

≤ M(α)
∫ −L

−∞
(t − s)−αe−γ(t−s)‖h(s + sn)− p(s)‖ds

+M(α)
∫ t

−L
(t − s)−αe−γ(t−s)‖h(s + sn)− p(s)‖ds

≤ 2M(α)‖h‖∞

∫ ∞

t+L
s−αe−γsds + M(α)ε

∫ ∞

0
s−αe−γsds

≤ 2M(α)‖h‖∞

∫ ∞

L
2

s−αe−γsds + M(α)ε
∫ ∞

0
s−αe−γsds

≤ M(α)ε

(

2‖h‖∞ +
∫ ∞

0
s−αe−γsds

)

,

which proves that the convergence is uniform on K, by the fact that the last esti-
mate is independent of t ∈ K. Proceeding as previously, one can similarly prove
that z(t − sn) converges to w uniformly on compact sets in R. The proof for Γ4 is
similar to that of Γ3.

Lemma 3.4. Under assumptions (H1)-(H2)-(H3)-(H4), the integral operators Γ1 and
Γ2 defined above map AAc(Xα) into itself.
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Proof. One follows along the same lines as in the proof of Lemma 3.3. Let u ∈
AAc(Xα). Since B ∈ B(Xα, X) it follows that Bu ∈ AAc(X). Setting h̃(t) =
f (t, Cu(t)) and using Theorem 2.11 it follows that h ∈ AAc(Xβ).

For a given sequence (σn)n∈N of real numbers, fix a subsequence (sn)n∈N, and
a continuous functions q ∈ BC(R; Xβ) such that h̃(t + sn) converges to q(t) in Xβ,
and q(t − sn) converges to h in Xβ, uniformly on compact sets of R. Using (3.2) it
follows that

‖AT(t − s)Ph̃(s)‖α ≤ c(t − s)β−α−1e−γ(t−s)‖h̃(s)‖β (3.5)

and hence the function s 7→ AT(t − s)Ph̃(s) is integrable over (−∞, t) for each
t ∈ R. Furthermore, since

w̃(t + sn) =
∫ t

−∞
AT(t − s)Ph̃(s + sn)ds, t ∈ R, n ∈ N, (3.6)

using the estimate (3.5) and the Lebesgue Dominated Convergence Theorem, it

follows that w̃(t + sn) converges to z̃(t) =
∫ t

−∞
AT(t − s)q(s)ds for each t ∈ R in

the fractional space Xα.
The remaining task is to prove that the convergence is uniform on all compact

sets in R. Let K ⊂ R be an arbitrary compact and let ε > 0. Fix L > 0 and Nε ∈ N

such that K ⊂ [−L
2 , L

2 ] with
∫ ∞

L/2
sβ−α−1e−γs

< ε and

‖h̃(s + sn)− p(s)‖β ≤ ε, n ≥ Nε, s ∈ [−L, L].

Using the notation ‖L‖∞,β = sup
s∈R

‖L(s)‖β , for each t ∈ K, one has:

‖w̃(t + sn)− z(t)‖α ≤
∫ t

−∞
‖AT(t − s)P(h̃(s + sn)− q(s))‖αds

≤ c
∫ −L

−∞
(t − s)β−α−1e−γ(t−s)‖h̃(s + sn)− q(s)‖βds

+c
∫ t

−L
(t − s)β−α−1e−γ(t−s)‖h̃(s + sn)− q(s)‖βds

≤ 2c‖h̃‖∞,β

∫ ∞

t+L
sβ−α−1e−γsds + cε

∫ ∞

0
sβ−α−1e−γsds(3.7)

≤ 2c‖h̃‖∞,β

∫ ∞

L
2

sβ−α−1e−γsds + cε
∫ ∞

0
sβ−α−1e−γsds(3.8)

≤ cε

(

2‖h̃‖∞,β +
∫ ∞

0
sβ−α−1e−γsds

)

, (3.9)

which proves that the convergence is uniform on K, by the fact that the last esti-
mate is independent of t ∈ K. Proceeding as previously, one can similarly prove
that z̃(t − sn) converges to w̃ uniformly on compact sets in R. The proof for Γ2 is
similar to that of Γ1.

Throughout the rest of the paper, the constant k(α) denotes the bound of the
embedding Xβ →֒ Xα, that is,

‖u‖α ≤ k(α)‖u‖β for each u ∈ Xβ.
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Theorem 3.5. Under the assumptions (H1)-(H2)-(H3)-(H4), the evolution equation
(1.2) has a unique almost automorphic mild solution whenever Θ < 1, where

Θ = K̟

[

k(α) +
c

δ
+ c

Γ(β − α)

γβ−α
+

M(α)Γ(1 − α)

γ1−α
+

c(α)

δ

]

,

and ̟ = max(‖B‖B(Xα ,X), ‖C‖B(Xα,X)).

Proof. Consider the nonlinear operator Q on AAc(Xα) given by

Qu(t) = − f (t, Bu(t)) −
∫ t

−∞
AT(t − s)P f (s, Bu(s))ds

+
∫ ∞

t
AT(t − s)Q f (s, Bu(s))ds +

∫ t

−∞
T(t − s)Pg(s, Cu(s))ds

−
∫ ∞

t
T(t − s)Qg(s, Cu(s))ds

for each t ∈ R.
As we have previously seen, for every u ∈ AAc(Xα), f (·, Bu(·)) ∈ AAc(Xβ) ⊂

AAc(Xα). In view of Lemma 3.3 and Lemma 3.4, it follows that Q maps AAc(Xα)
into itself. To complete the proof one has to show that Q has a unique fixed-point.

Let v, w ∈ AAc(Xα)

‖Γ1(v)(t) − Γ1(w)(t)‖α ≤
∫ t

−∞
‖AT(t − s)P [ f (s, Bv(s)) − f (s, Bw(s))]‖α ds

≤ cK‖B‖B(Xα ,X)‖v − w‖∞,α

∫ t

−∞
(t − s)β−α−1e−γ(t−s)ds

= c
Γ(β − α)

γβ−α
K‖B‖B(Xα ,X)‖v − w‖∞,α.

Similarly,

‖Γ2(v)(t) − Γ2(w)(t)‖α ≤
∫ ∞

t
‖AT(t − s)Q [ f (s, Bv(s)) − f (s, Bw(s))] ‖αds

≤ cK‖B‖B(Xα ,X)‖v − w‖∞,α

∫ +∞

t
eδ(t−s)ds

=
cK‖B‖B(Xα ,X)

δ
‖v − w‖∞,α.

Now for Γ3 and Γ4, we have the following approximations

‖Γ3(v)(t) − Γ3(w)(t)‖α ≤
∫ t

−∞
‖T(t − s)P [g(s, Cv(s)) − g(s, Cw(s))] ‖αds

≤
K‖C‖B(Xα ,X)M(α)Γ(1 − α)

γ1−α
‖v − w‖∞,α,

and

‖Γ4(v)(t) − Γ4(w)(t)‖α ≤
∫ +∞

t
‖T(t − s)Q [g(s, Cv(s)) − g(s, Cw(s))] ‖αds

≤ Kc(α)‖C‖B(Xα ,X)‖v − w‖∞,α

∫ +∞

t
eδ(t−s)ds

=
K‖C‖B(Xα ,X)c(α)

δ
‖v − w‖∞,α.
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Combining it follows that

‖Qv − Qw‖∞,α ≤ Θ . ‖v − w‖∞,α.

Clearly, if Θ < 1, then (1.2) has a unique fixed-point by the Banach fixed point
theorem, which obviously is the only (compact) almost automorphic solution to
(1.2).

Example 3.6. (The 1-D Heat Equation with Small Delay). For σ ∈ R, consider the
one-dimensional heat equation with small delay equipped with Dirichlet condi-
tions:

∂

∂t
[ϕ(t, x) + f (t, ϕ(t − p, x))] =

∂2

∂x2
ϕ(t, x) + σϕ(t, x) + g(t, ϕ(t − p, x)) (3.10)

ϕ(t, 0) = ϕ(t, 1) = 0 (3.11)

for t ∈ R and x ∈ [0, 1], where p > 0, and f , g : R × C[0, 1] 7→ C[0, 1] are some
jointly continuous functions.

Take X := C[0, 1], equipped with the sup norm. Define the operator A by

A(ϕ) := ϕ′′ + σϕ, ∀ϕ ∈ D(A),

where D(A) := {ϕ ∈ C2[0, 1], ϕ(0) = ϕ(1) = 0} ⊂ C[0, 1].
Clearly A is sectorial, and hence is the generator of an analytic semigroup. In

addition to the above, the resolvent and spectrum of A are respectively given by

ρ(A) = C − {−n2π2 + σ : n ∈ N} and σ(A) = {−n2π2 + σ : n ∈ N}

so that σ(A) ∩ iR = {∅} whenever σ 6= n2π2.

Theorem 3.7. Under assumptions (H3)-(H4), if σ 6= n2π2 for each n ∈ N, then the
heat equation with small delay (3.10)-(3.11) has a unique Xα-valued compact almost
automorphic mild solution whenever K is small enough.
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