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Abstract

In this paper we are interested in the existence of solutions for Dirichlet
problem associated to the degenerate quasilinear elliptic equations

−div [v(x)A(x, u,∇u)] + ω(x)A0(x, u(x)) = f0 −
n

∑
j=1

Dj f j, on Ω

in the setting of the weighted Sobolev spaces W
1,p
0 (Ω, ω, v).

1 Introduction

In this paper we prove the existence of (weak) solutions in the weighted Sobolev

spaces W
1,p
0 (Ω, ω, v) (see Definition 2.3) for the Dirichlet problem

(P)











Lu(x) = f0(x)−
n

∑
j=1

Dj f j(x), on Ω

u(x) = 0, on ∂Ω

where L is the partial differential operator

Lu(x) = −
n

∑
j=1

Dj

[

v(x)Aj(x, u(x),∇u(x))

]

+ ω(x)A0(x, u(x)) (1.1)
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where Dj = ∂/∂xj, Ω is a bounded open set in R
n, ω and v are weight func-

tions (i.e., locally integrable non-negative functions on R
n), and the functions

Aj : Ω×R×R
n→R (j = 1, ..., n) (with A(x, η, ξ) = (A1(x, η, ξ), ...,An(x, η, ξ)))

and A0 : Ω×R→R satisfy the following conditions:

(H1) x 7→Aj(x, η, ξ) is measurable in Ω for all (η, ξ)∈ R×R
n (j = 1, 2..., n)

(η, ξ) 7→Aj(x, η, ξ) is continuous in R×R
n for almost all x∈ Ω, and

x 7→A0(x, η) is measurable in Ω for all η ∈R

η 7→A0(x, η) is continuous in R for almost all x ∈Ω.

(H2) There are λ > 0 and functions h0, h1, h2, h̃1 and h̃2, with h0 ∈ Lp ′
(Ω, v),

h2 ∈ L1(Ω, v), h1v/ω ∈ Lp′(Ω, ω), h̃1 ∈ Lp′(Ω, ω) and h̃2 ∈ L1(Ω, ω) such that

A(x, η, ξ).ξ ≥ λ|ξ|p − h0(x)|ξ| − h1(x)|η| − h2(x)

(where A(x, η, ξ).ξ denotes the usual inner product in R
n) and

A0(x, η)η ≥ λ|η|p − h̃1(x)|η| − h̃2(x)

with 1 < p < ∞, and we denote by p ′ the real number such that 1/p + 1/p ′ = 1
(that is , p ′ is the conjugate exponent to p).
(H3) There are positive functions K1, K2, h3, h4, h̃3 and h̃4, with h3, h̃3, h4 and

h̃4 ∈ L∞(Ω), K1 ∈ Lp′(Ω, v) and K2 ∈ Lp′(Ω, ω) such that

|A(x, η, ξ)| ≤ K1(x) + h3(x)|η|
θ(p−1) + h4(x)|ξ|

p−1,

|A0(x, η)| ≤ K2(x) + h̃3(x)|η|
p−1,

where θ as in Theorem 2.6.
(H4) For (η, ξ), (η′ , ξ′)∈R×R

n and x∈Ω, the function

t 7→ v(x)A(x, η′ + tη, ξ′ + tξ).ξ + ω(x)A0(x, η′ + tη)η

is monotone increasing as a function of t∈ [0, 1].

Remark 1.1 Note that the condition (H4) holds if

[A(x, η, ξ) −A(x, η′, ξ′)].(ξ − ξ′)≥0 and (A0(x, η)−A0(x, η′))(η − η′)≥ 0

whenever ξ, ξ′∈R
n, ξ 6=ξ′, η, η′ ∈R, η 6= η′ (see Proposition 25.6 in [17]).

By a weight, we shall mean a locally integrable function v on R
n such that

v(x) > 0 for a.e. x ∈R
n. Every weight v gives rise to a measure on the measurable

subsets on R
n through integration. This measure will also be denoted by v. Thus,

v(E) =
∫

E v(x) dx for measurable sets E ⊂R
n.

In general, the Sobolev spaces Wk,p(Ω) without weights occur as spaces of
solutions for elliptic and parabolic partial differential equations. For degenerate
partial differential equations, i.e., equations with various types of singularities in
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the coefficients, it is natural to look for solutions in weighted Sobolev spaces (see
[5], [6],[7] and [10]).

A class of weights, which is particularly well understood, is the class of Ap-
weights (or Muckenhoupt class) that was introduced by B. Muckenhoupt (see
[13]). These classes have found many useful applications in harmonic analysis
(see [14]). Another reason for studying Ap-weights is the fact that powers of
distance to submanifolds of R

n often belong to Ap (see [11]). There are, in fact,
many interesting examples of weights (see [10] for p-admissible weights).

Equations like (1.1) have been studied by many authors in the non-degenerate
case (i.e. with ω(x) = v(x)≡ 1) (see e.g. [4] and the references therein).

The degenerate case with different conditions have been studied by many au-
thors. In [2] Drábek, Kufner and Mustonen proved that under certain condi-
tion the Dirichlet problem associated with the equation − div(a(x, u,∇u) = h,

h∈ [W1,2
0 (Ω, ω)]∗, has at least one solution u in W

1,p
0 (Ω, ω). See also [16].

The purpose in this paper, is to prove the same results for the degenerate non-
linear elliptic equations

− div(v(x)A(x, u(x),∇u(x)) + ω(x)A0(x, u(x)) = f0(x)−
n

∑
j=1

Dj f j(x).

When ω = v≡ 1 (the non weighted case) existence results for problem (P) have
been shown in [1].

The main result of this article is given in the next theorem, which is proved in
the section 3.

Theorem 1.2 Assume that conditions (H1)-(H4) hold. Let ω and v be weights. If v≤ ω,

ω ∈ Ap, v∈ Ap, 1 < p < ∞, f0/ω ∈ Lp ′
(Ω, ω) and f j/v∈ Lp ′

(Ω, v) (j = 1, ..., n),

then problem (P) has a solution u∈W
1,p
0 (Ω, ω, v).

The basic idea is to reduce the problem (P) to an operator equation Au = T and
apply the theorem below.

Theorem 1.3 Let A : X→X∗ be a monotone, coercive and hemicontinuous operator on
the real, separable, reflexive Banach space X. Then for each T ∈ X∗ the equation Au = T
has a solution u∈ X.
Proof. See Theorem 26.A in [17].

Remark 1.4 Let X be a Banach space and let A : X → X∗ be an operator (where
X∗ denotes the dual space of X).

(i) A is called monotone iff

〈Au − Av, u − v〉 ≥ 0

for all u, v∈ X (where 〈 f , u〉 denotes the value of the linear functional f ∈ X∗ at
point u∈ X).
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(ii) A is called coercive iff

lim
‖u‖→∞

〈Au, u〉

‖u‖
= +∞.

(iii) A is said to be hemicontinuous iff the real function

t 7→ 〈A(u1 + tu2), u3〉

is continuous on [0, 1] for all u1, u2, u3 ∈ X (see [17] for more informations about
monotone, coercive and hemicontinuous operators.)

2 Definitions and basic results

Let v be a locally integrable nonnegative function in R
n and assume that

0 < v(x) < ∞ almost everywhere. We say that v belongs to the Muckenhoupt
class Ap, 1 < p < ∞, or that v is an Ap-weight, if there is a constant C = Cp,v such
that

(

1

|B|

∫

B
v(x) dx

)(

1

|B|

∫

B
v1/(1−p)(x) dx

)p−1

≤ C

for all balls B⊂R
n, where |.| denotes the n-dimensional Lebesgue measure in

R
n. If 1 < q≤ p, then Aq ⊂ Ap (see [9],[10] or [14] for more informations about

Ap-weights). The weight v satisfies the doubling condition if v(2B)≤ C v(B), for
all balls B⊂R

n, where v(B) =
∫

B v(x)dx and 2B denotes the ball with the same
center as B which is twice as large. If v∈ Ap, then v is doubling (see Corollary
15.7 in [10]).

As an example of Ap-weight, the function v(x) = |x|α, x∈R
n, is in Ap if and

only if −n < α < n(p − 1) (see Corollary 4.4, Chapter IX in [14]).
If v∈ Ap, then

(

|E|

|B|

)p

≤ C
v(E)

v(B)

whenever B is a ball in R
n and E is a measurable subset of B (see 15.5 strong

doubling property in [10]). Therefore, if v(E) = 0 then |E| = 0.

Definition 2.1 Let v be a weight, and let Ω ⊂R
n be a bounded open set. For

1 < p < ∞, we define Lp(Ω, v) as the set of measurable functions f on Ω such
that

‖ f‖Lp(Ω,v) =

(

∫

Ω
| f (x)|pv(x) dx

)1/p

< ∞.

Remark 2.2 If v∈ Ap, 1 < p < ∞, then since v−1/(p−1) is locally integrable, we
have

Lp(Ω, v)⊂ L1
loc(Ω)
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for every open set Ω (see Remark 1.2.4 in [15]). It thus makes sense to talk about
weak derivatives of functions in Lp(Ω, v). We also have that the dual space of

Lp(Ω, v) is the space [Lp(Ω, v)]∗ = Lp ′
(Ω, v1−p ′

).

Definition 2.3 Let Ω ⊂R
n be bounded open set, and let ω and v be Ap-weights,

1 < p < ∞. We define the weighted Sobolev space W1,p(Ω, ω, v) as the set of
functions u∈ Lp(Ω, ω) with weak derivatives Dju∈ Lp(Ω, v) (j = 1, .., n). The

norm of u in W1,p(Ω, ω, v) is defined by

‖u‖W1,p(Ω,ω,v) =

(

∫

Ω
|u(x)|pω(x) dx +

n

∑
j=1

∫

Ω
|Dju(x)|

pv(x) dx

)1/p

. (2.1)

The space W
1,p
0 (Ω, ω, v) is the closure of C∞

0 (Ω) with respect to the norm
‖u‖W1,p(Ω,ω,v).

Equipped by this norm, W1,p(Ω, ω, v) and W
1,p
0 (Ω, ω, v) are reflevixe Banach

spaces (see [12] for more informations about the spaces W1,p(Ω, ω, v)). The dual

space of W
1,p
0 (Ω, ω, v) is the space [W

1,p
0 (Ω, ω, v)]∗ = {T = f0 − div f : f =

( f1, ..., fn), f0/ω ∈ Lp ′
(Ω, ω) and f j/v∈ Lp ′

(Ω, v), j = 1, ..., n}.

Remark 2.4 (i) If v∈ Ap, 1 < p < ∞, then C∞(Ω) is dense in W1,p(Ω, v) =

W1,p(Ω, v, v) (see Corollary 2.1.6 in [15]).

(ii) If v≤ω then W
1,p
0 (Ω, ω)⊂W

1,p
0 (Ω, ω, v)⊂W

1,p
0 (Ω, v).

For a general theory of weighted Sobolev spaces W1,p(Ω, v) with v∈ Ap see
[10], [13] and [15]. For informations about weighted Sobolev spaces with others
weights see [18]. And for informations about weighted Sobolev spaces Wk,p(Ω, ω),
where ω = {ωα(x), |α| ≤ k} describes the family of weight functions ωα, see [3].

It is evident that the weights ω and v which satisfy C1 ≤ v(x) ≤ ω(x)≤ C2

(C1 and C2 > 0 constants) for x ∈Ω, gives nothing new (the space W1,p(Ω, ω, v)
is then identical with the classical Sobolev space W1,p(Ω)). Consequently, we
shall interested above all in such weight functions ω and v which either vanish
somewhere in Ω̄ or increase to infinity (or both).

In this paper we use the following two theorems.

Theorem 2.5 Let v∈ Ap, 1 < p < ∞, and let Ω be a bounded open set in R
n. If um→ u

in Lp(Ω, v) then there exist a subsequence {umk
} and a function Φ∈ Lp(Ω, v) such that

(i) umk
(x)→ u(x), mk→∞, v-a.e. on Ω;

(ii) |umk
(x)| ≤ Φ(x), v-a.e. on Ω.

Proof. The proof of this theorem follows the lines of Theorem 2.8.1 in [8].

Theorem 2.6 (The Weighted Sobolev Inequality)Let Ω be an open bounded set in R
n

(n≥ 2) and v∈ Ap (1 < p < ∞). There exist constants CΩ and δ positive such that for

all u∈W
1,p
0 (Ω, v) and all θ satisfying 1≤ θ ≤ n/(n − 1) + δ,

‖u‖Lθp(Ω,v)≤ CΩ‖∇u‖Lp(Ω,v). (2.2)
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Proof. Its suffices to prove the inequalities for functions u∈C∞
0 (Ω) (see Theorem

1.3 in [6]). To extend the estimates (2.2) to arbitrary u∈W
1,p
0 (Ω, v), we let {um} be

a sequence of C∞
0 (Ω) functions tending to u in W

1,p
0 (Ω, v). Applying the estimates

(2.2) to differences um1
− um2 , we see that {um} will be a Cauchy sequence in

Lθp(Ω, v). Consequently the limit functions u will lie in the desired spaces and
satisfy (2.2).

Definition 2.7 Let 1 < p < ∞, ω and v Ap-weights, with v≤ω. We say that an

element u∈W
1,p
0 (Ω, ω, v) is a (weak) solution of problem (P) if

n

∑
j=1

∫

Ω
v(x)A(x, u,∇u).∇ϕ dx +

∫

Ω
A0(x, u) ϕ ω dx

=
∫

Ω
f0ϕ dx +

n

∑
j=1

∫

Ω
f jDjϕ dx,

for all ϕ ∈W
1,p
0 (Ω, ω, v).

3 Proof of theorem 1.2

Step 1. We define

B : W
1,p
0 (Ω, ω, v)×W

1,p
0 (Ω, ω, v)→R

B(u, ϕ) =
n

∑
j=1

∫

Ω
vAj(x, u,∇u)Dj ϕ dx +

∫

Ω
A0(x, u) ϕ ω dx

and

T : W
1,p
0 (Ω, ω, v)→R

T(ϕ) =
∫

Ω
f0 ϕ dx +

n

∑
j=1

∫

Ω
f jDjϕ dx.

Then u∈W
1,p
0 (Ω, ω, v) is a (weak) solution to problem (P) if

B(u, ϕ) = T(ϕ), for all ϕ ∈W
1,p
0 (Ω, ω, v).

Using (H3), f0/ω ∈ Lp′(Ω, ω), f j/v∈ Lp′(Ω, v) (j = 1, 2..., n), Remark 2.4(ii) and
Theorem 2.6, we have that

|T(ϕ)| ≤ C

(

‖ f0/ω‖
Lp′ (Ω,ω)

+
n

∑
j=1

‖ f j/v‖
Lp′ (Ω,v)

)

‖ϕ‖
W

1,p
0 (Ω,ω,v)

, (3.1)
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and

|B(u, ϕ)| ≤
∫

Ω
|A(x, u,∇u)||∇ϕ|v dx +

∫

Ω
|A0(x, u)||ϕ| ω dx

≤
∫

Ω
(K1 + h3|u|

θ(p−1) + h4|∇u|p−1)|∇ϕ|v dx +
∫

Ω
(K2 + h̃3|u|

p−1)|ϕ| ω dx

≤C

(

‖K1‖Lp′ (Ω,v)
+ ‖h3‖L∞(Ω)‖u‖

θ(p−1)

W
1,p
0 (Ω,ω,v)

+ ‖h4‖L∞(Ω)‖u‖
p−1

W
1,p
0 (Ω,ω,v)

+‖K2‖Lp′ (Ω,ω)
+ ‖h̃3‖L∞(Ω)‖u‖

p−1

W
1,p
0 (Ω,ω,v)

)

‖ϕ‖
W

1,p
0 (Ω,ω,v)

. (3.2)

Since B(u, .) is linear for each u∈W
1,p
0 (Ω, ω, v), there exists a linear and con-

tinuous operator A : W
1,p
0 (Ω, ω, v)→ [W

1,p
0 (Ω, ω, v)]∗ such that

〈Au, ϕ〉 = B(u, ϕ), for all u, ϕ ∈W
1,p
0 (Ω, ω, v)

and

‖Au‖∗ ≤ C

(

‖K1‖Lp′ (Ω,v)
+ ‖h3‖L∞(Ω)‖u‖

θ(p−1)

W
1,p
0 (Ω,ω,v)

+ ‖h4‖L∞(Ω)‖u‖
p−1

W
1,p
0 (Ω,ω,v)

+ ‖K2‖Lp′ (Ω,ω)
+ ‖h̃3‖L∞(Ω)‖u‖

p−1

W
1,p
0 (Ω,ω,v)

)

where ‖.‖∗ denotes the norm in [W
1,p
0 (Ω, ω, v)]∗. Consequently, problem (P) is

equivalent to the operator equation Au = T, u∈W
1,p
0 (Ω, ω, v).

Step 2. The operator A : W
1,p
0 (Ω, ω, v)→ [W

1,p
0 (Ω, ω, v)]∗ is continuous. In fact,

we define the operators

Fj : W
1,p
0 (Ω, ω, v)→ Lp ′

(Ω, v), (j = 1, ..., n)

(Fju)(x) = Aj(x, u(x),∇u(x))

and

G : W
1,p
0 (Ω, ω, v)→ Lp ′

(Ω, ω)

(Gu)(x) = A0(x, u(x)).

We have that the operators Fj and G are bounded and continuous. In fact,
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(i) Using (H3), Remark 2.4(ii) and Theorem 2.6, we obtain

‖Fju‖
p′

Lp′ (Ω,v)
=

∫

Ω
|Fju(x)|

p′v dx =
∫

Ω
|Aj(x, u,∇u)|p′v dx

≤
∫

Ω

(

K1 + h3|u|
θ(p−1) + h4|∇u|p−1

)p′

v dx

≤ C
∫

Ω

[

(K
p′

1 + h
p′

3 |u|θp + h
p′

4 |∇u|p)v

]

dx

= C

[

∫

Ω
K

p′

1 v dx +
∫

Ω
h

p′

3 |u|θpv dx +
∫

Ω
h

p′

4 |∇u|pv dx

]

≤ C

[

‖K1‖
p′

Lp′(Ω,v)
+ ‖h3‖

p′

L∞(Ω)
C

θp
Ω
‖∇u‖

θp

Lp(Ω,v)

+ ‖h4‖
p′

L∞(Ω)
‖∇u‖

p

Lp(Ω,v)

]

≤ C

[

‖K1‖
p′

Lp′(Ω,v)
+ ‖h3‖

p′

L∞(Ω)
C

θp
Ω
‖u‖

θp

W
1,p
0 (Ω,ω,v)

+ ‖h4‖
p′

L∞(Ω)
‖u‖

p

W
1,p
0 (Ω,ω,v)

]

. (3.3)

Analogously, we have

‖Gu‖
p′

Lp′ (Ω,ω)
=

∫

Ω
|A0(x, u)|p′ω dx

≤
∫

Ω

(

K2 + h̃3|u|
p−1

)p′

ω dx

≤ C

(

‖K2‖
p′

Lp′ (Ω,ω)
+ ‖h̃3‖

p′

L∞‖u‖
p

W
1,p
0 (Ω,ω,v)

)

.

(ii) Let um → u in W
1,p
0 (Ω, ω, v) as m →∞. We need to show that Fjum → Fju in

Lp ′
(Ω, v) and Gum →Gu in Lp ′

(Ω, ω).

If um → u in W
1,p
0 (Ω, ω, v), then um → u in Lp(Ω, ω) and ∇um →∇u in (Lp(Ω, v))n.

Using Theorem 2.5, there exist a subsequence {umk
}, functions Φ1∈Lp(Ω, ω) and

Φ2∈Lp(Ω, v) such that

umk
(x)→ u(x), ω − a.e. in Ω

|umk
(x)| ≤ Φ1(x) ω − a.e in Ω

∇umk
(x)→∇u(x), v − a.e. in Ω

|∇umk
(x)| ≤ Φ2(x), v − a.e. in Ω.
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Hence, using (H3), we obtain

‖Fjumk
− Fju‖

p′

Lp′ (Ω,v)
=

∫

Ω
|Fjumk

(x)− Fju(x)|
p′v dx

=
∫

Ω
|Aj(x, umk

,∇umk
)−Aj(x, u,∇u)|p

′
v dx

≤ C
∫

Ω

(

|Aj(x, umk
,∇umk

)|p
′
+ |Aj(x, u,∇u)|p

′
)

v dx

≤ C

[

∫

Ω

(

K1 + h3|umk
|θ(p−1) + h4|∇umk

|p−1

)p′

v dx

+
∫

Ω

(

K1 + h3|u|
θ(p−1) + h4|∇u|p−1

)p′

v dx

]

≤ C

[

∫

Ω
K

p′

1 v dx + ‖h3‖
p′

L∞(Ω)
C

θp
Ω

(

‖∇umk
‖

θp

Lp(Ω,v)
+ ‖∇u‖

θp

Lp(Ω,v)

)

+ ‖h4‖
p′

L∞(Ω)

(

∫

Ω
|∇umk

|pv dx +
∫

Ω
|∇u|pv dx

)]

≤ C

[

∫

Ω
K

p′

1 v dx + ‖h3‖
p′

L∞(Ω)
C

θp
Ω
‖Φ2‖

θp

Lp(Ω,v)
+ ‖h4‖

p′

L∞(Ω)

∫

Ω
Φ

p
2 v dx

]

= C
∫

Ω

(

K
p′

1 +
‖h3‖

p′

L∞(Ω)
C

θp
Ω
‖Φ2‖

θp

Lp(Ω,v)

v(Ω)
+ ‖h4‖

p′

L∞(Ω)
Φ

p
2

)

v dx

= C
∫

Ω
g1(x) v(x) dx

where 0 < v(Ω) =
∫

Ω
v dx < ∞, g1 ∈ L1(Ω, v) with

g1(x) = K
p ′

1 (x) + ‖h4‖
p ′

L∞(Ω)
Φ

p
2(x) +

‖h3‖
p ′

L∞(Ω)
C

θp
Ω
‖Φ2‖

θp

Lp(Ω,v)

v(Ω)
.

Analogously, we have

‖Gumk
− Gu‖

p′

Lp′(Ω,ω)
=

∫

Ω
|Gumk

(x)− Gu(x)|p′ω dx

≤ C
∫

Ω
(|A0(x, umk

)|p
′

+ |A0(x, u)|p′)ωdx

≤ C
∫

Ω
(K2 + h̃3|umk

|p−1)p′ω dx +
∫

Ω
(K2 + h̃3|u|

p−1)p′ ω dx

≤ C

[

∫

Ω
K

p′

2 ω dx + ‖h̃3‖
p′

L∞(Ω)

(

∫

Ω
|umk

|pω dx +
∫

Ω
|u|pω dx

)]

≤ C

(

∫

Ω
(K

p′

2 + ‖h̃3‖
p′

L∞(Ω)Φ
p
1)ω dx

)

= C
∫

Ω
g2 ω dx,

where g2(x) = K
p ′

2 (x) + ‖h̃3‖
p ′

L∞(Ω)Φ
p
1(x) and g2 ∈ L1(Ω, ω).
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By condition (H1), we have, as k → ∞

Fjumk
(x) = Aj(x, umk

(x),∇umk
(x))→Aj(x, u(x),∇u(x)) = Fju(x),

Gumk
(x) = A0(x, umk

(x))→A0(x, u(x)) = Gu(x),

for almost all x∈Ω. Therefore, by Dominated Convergence Theorem, we obtain

‖Fjumk
− Fju‖Lp′ (Ω,v)

→ 0,

and

‖Gumk
− Gu‖

Lp′(Ω,ω)
→ 0,

that is, Fjumk
→Fju in Lp ′

(Ω, v) and Gumk
→ Gu in Lp ′

(Ω, ω). By Convergence
principle in Banach spaces, we have

Fjum → Fju in Lp′(Ω, v), (3.4)

and

Gum → Gu in Lp′(Ω, ω). (3.5)

Finally, let um → u in W
1,p
0 (Ω, ω, v) as m →∞. We have

|B(um, ϕ)− B(u, ϕ)|

≤
n

∑
j=1

∫

Ω
|Aj(x, um,∇um)−Aj(x, u,∇u)||Djϕ| v dx

+
∫

Ω
|A0(x, um)−A0(x, u)||ϕ| ω dx

=
n

∑
j=1

∫

Ω
|Fjum − Fju||Djϕ|v dx +

∫

Ω
|Gum − Gu||ϕ| ω dx

≤

( n

∑
j=1

‖Fjum − Fju‖Lp′ (Ω,v)
+ ‖Gum − Gu‖

Lp′ (Ω,ω)

)

‖ϕ‖
W

1,p
0 (Ω,ω,v)

for all ϕ ∈W
1,p
0 (Ω, ω, v). Hence,

‖Aum − Au‖∗ ≤‖Gum − Gu‖
Lp′ (Ω,ω)

+
n

∑
j=1

‖Fjum − Fju‖Lp′ (Ω,v)
.

Therefore, by (3.4) and (3.5), ‖Aum − Au‖∗→ 0 as m →∞, that is, the operator A
is continuous.

Step 3. The operator A is monotone. In fact, by Proposition 25.6 in [17] the oper-

ator A : W
1,p
0 (Ω, ω, v)→ [W

1,p
0 (Ω, ω, v)]∗ is monotone if and only if the function

h(t) = 〈A(u+ t ϕ), ϕ〉, t∈ [0, 1], is increasing for all u, ϕ ∈W
1,p
0 (Ω, ω, v). We have,
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h(t) = 〈A(u + t ϕ), ϕ〉 = B(u + t ϕ, ϕ)

=
∫

Ω

(

vA(x, u + t ϕ,∇(u + t ϕ)).∇ϕ + ω A0(x, u + t ϕ))ϕ

)

dx

is monotone increasing as a functions of t∈ [0, 1] by (H4).

Step 4. We need to show that the operator A is coercive. We have, using (H2),

〈Au, u〉 = B(u, u)

=
∫

Ω
vA(x, u,∇u).∇u dx +

∫

Ω
A0(x, u)u ω dx

≥
∫

Ω

(

λ |∇u|p − h0(x)|∇u| − h1(x)|u| − h2(x)

)

v dx

+
∫

Ω

(

λ|u|p − h̃1|u| − h̃2

)

ω dx

≥λ‖u‖
p

W
1,p
0 (Ω,ω,v)

− (‖h0‖Lp ′ (Ω,v)
+ ‖h1v/ω‖

Lp′ (Ω,ω)
)‖u‖

W
1,p
0 (Ω,ω,v)

−‖h̃1‖Lp′ (Ω,ω)
‖u‖

W
1,p
0 (Ω,ω,v)

− ‖h2‖L1(Ω,v) − ‖h̃2‖L1(Ω,ω).

Hence since p > 1, we have

〈Au, u〉

‖u‖
W

1,p
0 (Ω,ω,v)

≥ λ‖u‖
p−1

W
1,p
0 (Ω,ω,v)

− ‖h0‖Lp ′ (Ω,v)
− ‖h1v/ω‖

Lp′ (Ω,ω)

−‖h̃1‖Lp′ (Ω,ω)
−

‖h2‖L1(Ω,v)

‖u‖
W

1,p
0 (Ω,ω,v)

−
‖h̃2‖L1(Ω,ω)

‖u‖
W

1,p
0 (Ω,ω,v)

.

Therefore,

〈Au, u〉

‖u‖
W

1,p
0 (Ω,ω,v)

→∞ as ‖u‖
W

1,p
0 (Ω,ω,v)

→∞,

that is, A is coercive.
Therefore, by Theorem 1.3, the operator equation Au = T has a solution

u∈W
1,p
0 (Ω, ω, v) and it is a solution for problem (P).

Example Let Ω = {(x, y)∈R
2 : x2 + y2

< 1}, 1 < p < ∞ and consider the weight
functions v(x, y) = (x2 + y2)−1/3p and ω(x, y) = (x2 + y2)−1/2p (ω, v∈ Ap), the

functions Ai : Ω ×R ×R
2→R (i = 1, 2) and A0 : Ω ×R →R defined by

Ai((x, y), η, ξ) = h4(x, y)|ξi |
p−1sgn(ξi),

A0((x, y), η) = |η|p−1sgn(η)(2 − cos2(xy)),
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where h4(x, y) = 2ex2+y2
. It is easy to show that the functions Ai((x, y), η, ξ)

(i = 1, 2) and A0((x, y), η) satisfy the conditions (H1), (H2) and (H3). By Remark
1.1, the conditions (H4) is satisfied, because if ξ = (ξ1, ξ2), ξ′ = (ξ′1, ξ′2)∈R

2,
η, η′ ∈R (ξ 6= ξ′ and η 6= η′) we have

[A((x, y), η, ξ) −A((x, y), η′, ξ′)].(ξ − ξ′)

= h4(x, y)[(|ξ1 |
p−1sgn(ξ1)− |ξ′1|

p−1
sgn(ξ′1))(ξ1 − ξ′1)

+(|ξ2|
p−1sgn(ξ2)− |ξ′2|

p−1
sgn(ξ′2))(ξ2 − ξ′2)] > 0

and

[A0((x, y), η)−A0((x, y), η′)](η − η′)

= (2 − cos2(xy))(|η|p−1 sgn(η)− |η′|
p−1

sgn(η′))(η − η′) > 0.

Let us consider the partial differential operator

Lu(x, y) = −div

[

v(x, y)A((x, y), u,∇u)

]

+ ω(x, y)A0((x, y), u)

= −
∂

∂x

[

v(x, y)A1((x, y), u,∇u)

]

−
∂

∂y

[

v(x, y)A2((x, y), u,∇u)

]

+ ω(x, y)A0((x, y), u).

Therefore, by Theorem 1.2, the problem

Lu(x, y) =
cos(xy)

(x2 + y2)α
−

∂

∂x

(

sin(xy)

(x2 + y2)β

)

−
∂

∂y

(

sin(xy)

(x2 + y2)β

)

, on Ω

u(x, y) = 0, on ∂Ω

where α < (2p − p ′ − 1)/2pp ′ and β < (3p − p ′ − 1)/3pp ′ , has a solution

u∈W1,2
0 (Ω, ω, v).
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